Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Comparison of Worst-Case Errors in Linear and Neural Network Approximation.

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F02%3A06020139" target="_blank" >RIV/67985807:_____/02:06020139 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Comparison of Worst-Case Errors in Linear and Neural Network Approximation.

  • Popis výsledku v původním jazyce

    Sets of multivariable functions are described for which worst case errors in linear approximation are larger than those in approximation by neural networks. A theoretical framework for such a description is developed in the context of nonlinear approximation by fixed versus variable basis functions. Comparison of approximation rates are formulated in terms of certain norms tailored to sets of basic functions. The results are applied to perceptron networks.

  • Název v anglickém jazyce

    Comparison of Worst-Case Errors in Linear and Neural Network Approximation.

  • Popis výsledku anglicky

    Sets of multivariable functions are described for which worst case errors in linear approximation are larger than those in approximation by neural networks. A theoretical framework for such a description is developed in the context of nonlinear approximation by fixed versus variable basis functions. Comparison of approximation rates are formulated in terms of certain norms tailored to sets of basic functions. The results are applied to perceptron networks.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA201%2F99%2F0092" target="_blank" >GA201/99/0092: Nelineární aproximace neuronovými sítěmi</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2002

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE Transactions on Information Theory

  • ISSN

    0018-9448

  • e-ISSN

  • Svazek periodika

    48

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    12

  • Strana od-do

    264-275

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus