Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Modifikovaný Gram-Schmidtův algoritmus, úloha nejmenších čtverců a zpětná stabilita metody GMRES

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F06%3A00405455" target="_blank" >RIV/67985807:_____/06:00405455 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00216208:11320/06:00002811

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Modified Gram-Schmidt (MGS), Least Squares, and Backward Stability of MGS-GMRES

  • Popis výsledku v původním jazyce

    The generalized minimum residual method (GMRES) [Y. Saad and M. Schultz,SIAM J. Sci. Statist. Comput., 7 (1986), pp. 856-869] for solving linear systems Ax=b is implemented as a sequence of least squares problems involving Krylov subspaces of increasingdimensions. The most usual implementation is modified Gram-Schmidt GMRES (MGS-GMRES). Here we show that MGS-GMRES is backward stable. The result depends on a more general result on the backward stability of a variant of the MGS algorithm applied to solving a linear least squares problem, and uses other new results on MGS and its loss of orthogonality, together with an important but neglected condition number, and a relation between residual norms and certain singular values.

  • Název v anglickém jazyce

    Modified Gram-Schmidt (MGS), Least Squares, and Backward Stability of MGS-GMRES

  • Popis výsledku anglicky

    The generalized minimum residual method (GMRES) [Y. Saad and M. Schultz,SIAM J. Sci. Statist. Comput., 7 (1986), pp. 856-869] for solving linear systems Ax=b is implemented as a sequence of least squares problems involving Krylov subspaces of increasingdimensions. The most usual implementation is modified Gram-Schmidt GMRES (MGS-GMRES). Here we show that MGS-GMRES is backward stable. The result depends on a more general result on the backward stability of a variant of the MGS algorithm applied to solving a linear least squares problem, and uses other new results on MGS and its loss of orthogonality, together with an important but neglected condition number, and a relation between residual norms and certain singular values.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/1ET400300415" target="_blank" >1ET400300415: Modelování a simulace náročných technických problémů: efektivní numerické algoritmy a paralelní implementace s pomocí nových informačních technologií</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2006

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    SIAM Journal on Matrix Analysis and Applications

  • ISSN

    0895-4798

  • e-ISSN

  • Svazek periodika

    28

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    21

  • Strana od-do

    264-284

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus