Odhady pokrývacích čísel konvexních množin s pomalu klesajícími ortogonálními podmnožinami
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F07%3A00042929" target="_blank" >RIV/67985807:_____/07:00042929 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Estimates of Covering Numbers of Convex Sets with Slowly Decaying Orthogonal Subsets
Popis výsledku v původním jazyce
Covering numbers of precompact symmetric convex subsets of Hilbert spaces are investigated. Lower bounds are derived for sets containing orthogonal subsets with norms of their elements converging to zero sufficiently slowly. When these sets are convex hulls of sets with power-type covering numbers, the bounds are tight. The arguments exploit properties of generalized Hadamard matrices. The results are illustrated by examples from machine learning, neurocomputing, and nonlinear approximation.
Název v anglickém jazyce
Estimates of Covering Numbers of Convex Sets with Slowly Decaying Orthogonal Subsets
Popis výsledku anglicky
Covering numbers of precompact symmetric convex subsets of Hilbert spaces are investigated. Lower bounds are derived for sets containing orthogonal subsets with norms of their elements converging to zero sufficiently slowly. When these sets are convex hulls of sets with power-type covering numbers, the bounds are tight. The arguments exploit properties of generalized Hadamard matrices. The results are illustrated by examples from machine learning, neurocomputing, and nonlinear approximation.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/1M0567" target="_blank" >1M0567: Centrum aplikované kybernetiky</a><br>
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2007
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Discrete Applied Mathematics
ISSN
0166-218X
e-ISSN
—
Svazek periodika
155
Číslo periodika v rámci svazku
15
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
13
Strana od-do
1930-1942
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—