Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Odhady pokrývacích čísel konvexních množin s pomalu klesajícími ortogonálními podmnožinami

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F07%3A00042929" target="_blank" >RIV/67985807:_____/07:00042929 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Estimates of Covering Numbers of Convex Sets with Slowly Decaying Orthogonal Subsets

  • Popis výsledku v původním jazyce

    Covering numbers of precompact symmetric convex subsets of Hilbert spaces are investigated. Lower bounds are derived for sets containing orthogonal subsets with norms of their elements converging to zero sufficiently slowly. When these sets are convex hulls of sets with power-type covering numbers, the bounds are tight. The arguments exploit properties of generalized Hadamard matrices. The results are illustrated by examples from machine learning, neurocomputing, and nonlinear approximation.

  • Název v anglickém jazyce

    Estimates of Covering Numbers of Convex Sets with Slowly Decaying Orthogonal Subsets

  • Popis výsledku anglicky

    Covering numbers of precompact symmetric convex subsets of Hilbert spaces are investigated. Lower bounds are derived for sets containing orthogonal subsets with norms of their elements converging to zero sufficiently slowly. When these sets are convex hulls of sets with power-type covering numbers, the bounds are tight. The arguments exploit properties of generalized Hadamard matrices. The results are illustrated by examples from machine learning, neurocomputing, and nonlinear approximation.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    IN - Informatika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/1M0567" target="_blank" >1M0567: Centrum aplikované kybernetiky</a><br>

  • Návaznosti

    Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2007

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Discrete Applied Mathematics

  • ISSN

    0166-218X

  • e-ISSN

  • Svazek periodika

    155

  • Číslo periodika v rámci svazku

    15

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    13

  • Strana od-do

    1930-1942

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus