Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Aktualizace předpodmínění pro modelování v dynamice tekutin

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F08%3A00089231" target="_blank" >RIV/67985807:_____/08:00089231 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Preconditioner Updates Applied to CFD Model Problems

  • Popis výsledku v původním jazyce

    This paper deals with solving sequences of nonsymmetric linear systems with a block structure arising from compressible flow problems. The systems are solved by a preconditioned iterative method. We attempt to improve the overall solution process by sharing a part of the computational effort throughout the sequence. Our approach is fully algebraic and it is based on updating preconditioners by a block triangular update. A particular update is computed in a black-box fashion from the known preconditionerof some of the previous matrices, and from the difference of involved matrices. Results of our test compressible flow problems show, that the strategy speeds up the entire computation. The acceleration is particularly important in phases of instationarybehavior where we saved about half of the computational time in the supersonic and moderate Mach number cases. In the low Mach number case the updated decompositions were similarly effective as the frozen preconditioners.

  • Název v anglickém jazyce

    Preconditioner Updates Applied to CFD Model Problems

  • Popis výsledku anglicky

    This paper deals with solving sequences of nonsymmetric linear systems with a block structure arising from compressible flow problems. The systems are solved by a preconditioned iterative method. We attempt to improve the overall solution process by sharing a part of the computational effort throughout the sequence. Our approach is fully algebraic and it is based on updating preconditioners by a block triangular update. A particular update is computed in a black-box fashion from the known preconditionerof some of the previous matrices, and from the difference of involved matrices. Results of our test compressible flow problems show, that the strategy speeds up the entire computation. The acceleration is particularly important in phases of instationarybehavior where we saved about half of the computational time in the supersonic and moderate Mach number cases. In the low Mach number case the updated decompositions were similarly effective as the frozen preconditioners.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2008

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Applied Numerical Mathematics

  • ISSN

    0168-9274

  • e-ISSN

  • Svazek periodika

    58

  • Číslo periodika v rámci svazku

    11

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    14

  • Strana od-do

  • Kód UT WoS článku

    000260268600003

  • EID výsledku v databázi Scopus