Comparison of preconditioned Krylov subspace iteration methods for PDE-constrained optimization problems - Poisson and convection-diffusion control
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68145535%3A_____%2F16%3A00468119" target="_blank" >RIV/68145535:_____/16:00468119 - isvavai.cz</a>
Výsledek na webu
<a href="http://link.springer.com/article/10.1007%2Fs11075-016-0111-1" target="_blank" >http://link.springer.com/article/10.1007%2Fs11075-016-0111-1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11075-016-0111-1" target="_blank" >10.1007/s11075-016-0111-1</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Comparison of preconditioned Krylov subspace iteration methods for PDE-constrained optimization problems - Poisson and convection-diffusion control
Popis výsledku v původním jazyce
Saddle point matrices of a special structure arise in optimal control problems. In this paper we consider distributed optimal control for various types of scalar stationary partial differential equations and compare the efficiency of several numerical solution methods. We test the particular case when the arising linear system can be compressed after eliminating the control function. In that case, a system arises in a form which enables application of an efficient block matrix preconditioner that previously has been applied to solve complex-valued systems in real arithmetic. Under certain assumptions the condition number of the so preconditioned matrix is bounded by 2. The numerical and computational efficiency of the method in terms of number of iterations and elapsed time is favourably compared with other published methods.
Název v anglickém jazyce
Comparison of preconditioned Krylov subspace iteration methods for PDE-constrained optimization problems - Poisson and convection-diffusion control
Popis výsledku anglicky
Saddle point matrices of a special structure arise in optimal control problems. In this paper we consider distributed optimal control for various types of scalar stationary partial differential equations and compare the efficiency of several numerical solution methods. We test the particular case when the arising linear system can be compressed after eliminating the control function. In that case, a system arises in a form which enables application of an efficient block matrix preconditioner that previously has been applied to solve complex-valued systems in real arithmetic. Under certain assumptions the condition number of the so preconditioned matrix is bounded by 2. The numerical and computational efficiency of the method in terms of number of iterations and elapsed time is favourably compared with other published methods.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/ED1.1.00%2F02.0070" target="_blank" >ED1.1.00/02.0070: Centrum excelence IT4Innovations</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Numerical Algorithms
ISSN
1017-1398
e-ISSN
—
Svazek periodika
73
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
33
Strana od-do
631-633
Kód UT WoS článku
000387113700003
EID výsledku v databázi Scopus
2-s2.0-84959098100