Comparison of preconditioned Krylov subspace iteration methods for PDE-constrained optimization problems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68145535%3A_____%2F17%3A00482333" target="_blank" >RIV/68145535:_____/17:00482333 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007%2Fs11075-016-0136-5" target="_blank" >https://link.springer.com/article/10.1007%2Fs11075-016-0136-5</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11075-016-0136-5" target="_blank" >10.1007/s11075-016-0136-5</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Comparison of preconditioned Krylov subspace iteration methods for PDE-constrained optimization problems
Popis výsledku v původním jazyce
The governing dynamics of fluid flow is stated as a system of partial differential equations referred to as the Navier-Stokes system. In industrial and scientific applications, fluid flow control becomes an optimization problem where the governing partial differential equations of the fluid flow are stated as constraints. When discretized, the optimal control of the Navier-Stokes equations leads to large sparse saddle point systems in two levels. In this paper, we consider distributed optimal control for the Stokes system and test the particular case when the arising linear system can be compressed after eliminating the control function. In that case, a system arises in a form which enables the application of an efficient block matrix preconditioner that previously has been applied to solve complex-valued systems in real arithmetic. Under certain conditions, the condition number of the so preconditioned matrix is bounded by 2. The numerical and computational efficiency of the method in terms of number of iterations and execution time is favorably compared with other published methods.
Název v anglickém jazyce
Comparison of preconditioned Krylov subspace iteration methods for PDE-constrained optimization problems
Popis výsledku anglicky
The governing dynamics of fluid flow is stated as a system of partial differential equations referred to as the Navier-Stokes system. In industrial and scientific applications, fluid flow control becomes an optimization problem where the governing partial differential equations of the fluid flow are stated as constraints. When discretized, the optimal control of the Navier-Stokes equations leads to large sparse saddle point systems in two levels. In this paper, we consider distributed optimal control for the Stokes system and test the particular case when the arising linear system can be compressed after eliminating the control function. In that case, a system arises in a form which enables the application of an efficient block matrix preconditioner that previously has been applied to solve complex-valued systems in real arithmetic. Under certain conditions, the condition number of the so preconditioned matrix is bounded by 2. The numerical and computational efficiency of the method in terms of number of iterations and execution time is favorably compared with other published methods.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Numerical Algorithms
ISSN
1017-1398
e-ISSN
—
Svazek periodika
74
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
19
Strana od-do
19-37
Kód UT WoS článku
000391392300002
EID výsledku v databázi Scopus
2-s2.0-84965082158