Preconditioning of two-by-two block matrix systems with square matrix blocks, with applications
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68145535%3A_____%2F17%3A00482832" target="_blank" >RIV/68145535:_____/17:00482832 - isvavai.cz</a>
Výsledek na webu
<a href="http://articles.math.cas.cz/10.21136/AM.2017.0222-17/?type=F" target="_blank" >http://articles.math.cas.cz/10.21136/AM.2017.0222-17/?type=F</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.21136/AM.2017.0222-17" target="_blank" >10.21136/AM.2017.0222-17</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Preconditioning of two-by-two block matrix systems with square matrix blocks, with applications
Popis výsledku v původním jazyce
Two-by-two block matrices of special form with square matrix blocks arise in important applications, such as in optimal control of partial differential equations and in high order time integration methods. Two solution methods involving very efficient preconditioned matrices, one based on a Schur complement reduction of the given system and one based on a transformation matrix with a perturbation of one of the given matrix blocks are presented. The first method involves an additional inner solution with the pivot matrix block but gives a very tight condition number bound when applied for a time integration method. The second method does not involve this matrix block but only inner solutions with a linear combination of the pivot block and the off-diagonal matrix blocks. Both the methods give small condition number bounds that hold uniformly in all parameters involved in the problem, i.e. are fully robust. The paper presents shorter proofs, extended and new results compared to earlier publications.
Název v anglickém jazyce
Preconditioning of two-by-two block matrix systems with square matrix blocks, with applications
Popis výsledku anglicky
Two-by-two block matrices of special form with square matrix blocks arise in important applications, such as in optimal control of partial differential equations and in high order time integration methods. Two solution methods involving very efficient preconditioned matrices, one based on a Schur complement reduction of the given system and one based on a transformation matrix with a perturbation of one of the given matrix blocks are presented. The first method involves an additional inner solution with the pivot matrix block but gives a very tight condition number bound when applied for a time integration method. The second method does not involve this matrix block but only inner solutions with a linear combination of the pivot block and the off-diagonal matrix blocks. Both the methods give small condition number bounds that hold uniformly in all parameters involved in the problem, i.e. are fully robust. The paper presents shorter proofs, extended and new results compared to earlier publications.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Applications of Mathematics
ISSN
0862-7940
e-ISSN
—
Svazek periodika
62
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
23
Strana od-do
537-559
Kód UT WoS článku
000419946700002
EID výsledku v databázi Scopus
—