Superior properties of the PRESB preconditioner for operators on two-by-two block form with square blocks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68145535%3A_____%2F20%3A00534464" target="_blank" >RIV/68145535:_____/20:00534464 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007%2Fs00211-020-01143-x" target="_blank" >https://link.springer.com/article/10.1007%2Fs00211-020-01143-x</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00211-020-01143-x" target="_blank" >10.1007/s00211-020-01143-x</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Superior properties of the PRESB preconditioner for operators on two-by-two block form with square blocks
Popis výsledku v původním jazyce
Matrices or operators in two-by-two block form with square blocks arise in numerous important applications, such as in optimal control problems for PDEs. The problems are normally of very large scale so iterative solution methods must be used. Thereby the choice of an efficient and robust preconditioner is of crucial importance. Since some time a very efficient preconditioner, the preconditioned square block, PRESB method has been used by the authors and coauthors in various applications, in particular for optimal control problems for PDEs. It has been shown to have excellent properties,nsuch as a very fast and robust rate of convergence that outperforms other methods. In this paper the fundamental and most important properties of the method are stressed and presented with new and extended proofs. Under certain conditions, the condition number of the preconditioned matrix is bounded by 2 or even smaller. Furthermore, under certain assumptions the rate of convergence is superlinear.
Název v anglickém jazyce
Superior properties of the PRESB preconditioner for operators on two-by-two block form with square blocks
Popis výsledku anglicky
Matrices or operators in two-by-two block form with square blocks arise in numerous important applications, such as in optimal control problems for PDEs. The problems are normally of very large scale so iterative solution methods must be used. Thereby the choice of an efficient and robust preconditioner is of crucial importance. Since some time a very efficient preconditioner, the preconditioned square block, PRESB method has been used by the authors and coauthors in various applications, in particular for optimal control problems for PDEs. It has been shown to have excellent properties,nsuch as a very fast and robust rate of convergence that outperforms other methods. In this paper the fundamental and most important properties of the method are stressed and presented with new and extended proofs. Under certain conditions, the condition number of the preconditioned matrix is bounded by 2 or even smaller. Furthermore, under certain assumptions the rate of convergence is superlinear.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Numerische Mathematik
ISSN
0029-599X
e-ISSN
—
Svazek periodika
146
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
34
Strana od-do
335-368
Kód UT WoS článku
000563156700001
EID výsledku v databázi Scopus
2-s2.0-85089871065