Efficient iterative solvers for a complex valued two-by-two block linear system with application to parabolic optimal control problems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68145535%3A_____%2F20%3A00534407" target="_blank" >RIV/68145535:_____/20:00534407 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0168927419303198?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0168927419303198?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.apnum.2019.11.011" target="_blank" >10.1016/j.apnum.2019.11.011</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Efficient iterative solvers for a complex valued two-by-two block linear system with application to parabolic optimal control problems
Popis výsledku v původním jazyce
In this paper, we are concerned with the efficient iterative solution of time-harmonic parabolic optimal control problems. A robust parameterized preconditioner is proposed for the arising complex valued two-by-two block linear system related to the first-order optimality conditions. Practical parameter choice strategies are considered for the new preconditioner to improve the performance of the original preconditioner within Krylov subspace acceleration. Moreover, a nonstationary second-order iteration method is devised from the parameterized preconditioner within Chebyshev acceleration. Based on a detailed spectral analysis of the preconditioned matrix, convergence rates are analyzed for both the established Krylov subspace and Chebyshev acceleration methods. Due to the tight and problem independent eigenvalue distributions of the preconditioned matrix, the implementation of the Chebyshev acceleration method is parameter free and the obtained iteration error bounds of both methods result in almost parameter independent convergence rates. Numerical experiments are presented to confirm the robustness and effectiveness of the parameterized preconditioner for both Krylov subspace and Chebyshev accelerations and improvement compared to earlier results.
Název v anglickém jazyce
Efficient iterative solvers for a complex valued two-by-two block linear system with application to parabolic optimal control problems
Popis výsledku anglicky
In this paper, we are concerned with the efficient iterative solution of time-harmonic parabolic optimal control problems. A robust parameterized preconditioner is proposed for the arising complex valued two-by-two block linear system related to the first-order optimality conditions. Practical parameter choice strategies are considered for the new preconditioner to improve the performance of the original preconditioner within Krylov subspace acceleration. Moreover, a nonstationary second-order iteration method is devised from the parameterized preconditioner within Chebyshev acceleration. Based on a detailed spectral analysis of the preconditioned matrix, convergence rates are analyzed for both the established Krylov subspace and Chebyshev acceleration methods. Due to the tight and problem independent eigenvalue distributions of the preconditioned matrix, the implementation of the Chebyshev acceleration method is parameter free and the obtained iteration error bounds of both methods result in almost parameter independent convergence rates. Numerical experiments are presented to confirm the robustness and effectiveness of the parameterized preconditioner for both Krylov subspace and Chebyshev accelerations and improvement compared to earlier results.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Applied Numerical Mathematics
ISSN
0168-9274
e-ISSN
—
Svazek periodika
152
Číslo periodika v rámci svazku
June 2020
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
24
Strana od-do
422-445
Kód UT WoS článku
000519653600027
EID výsledku v databázi Scopus
2-s2.0-85075865990