Jak stabilizovat metody Simpler GMRES and GCR?
Popis výsledku
V této práci analyzujeme numerické chování několika metod minimalizujících normu rezidua, které jsou matematicky ekvivalentní metodě GMRES. Porovnáváme dva základní postupy: postup, který je založen na výpočtu aproximace řešení z horní trojúhelníkové soustavy pro její souřadnice a postup, kde jsou aproximace postupně upravovány jednoduchou rekurzní formulí. Práce ukazuje, že volba báze vypočteného prostoru může podstatným způsoben ovlivnit numerickou stabilitu implementace daných metod. Z důvodu špatnépodmíněnosti zvolené báze jsou implementace Simpler GMRES a ORTHODIR méně stabilní. Na druhé straně se ukazuje, ze pokud metoda konverguje dostatečně rychle, je báze reziduí dobře podmíněná. Tyto výsledky pak vedou k nove implementaci, která je podmíněnězpětně stabilní, a potvrzují experimentálně známý fakt, že metoda GCR v případě dostatečně rychlé konvergence generuje velice přesné aproximace řešení.
Klíčová slova
large-scale nonsymmetric linear systemsKrylov subspace methodsminimum residual methodsnumerical stabilityrounding errors
Identifikátory výsledku
Kód výsledku v IS VaVaI
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
How to make Simpler GMRES and GCR more Stable
Popis výsledku v původním jazyce
In this paper we analyze the numerical behavior of several minimum residual methods, which are mathematically equivalent to the GMRES method. Two main approaches are compared: the one that computes the approximate solution in terms of a Krylov space basis from an upper triangular linear system for the coordinates, and the one where the approximate solutions are updated with a simple recursion formula. We show that a different choice of the basis can significantly influence the numerical behavior of theresulting implementation. While Simpler GMRES and ORTHODIR are less stable due to the ill-conditioning of the basis used, the residual basis is well-conditioned as long as we have a reasonable residual norm decrease. These results lead to a new implementation, which is conditionally backward stable, and they explain the experimentally observed fact that the GCR method delivers very accurate approximate solutions when it converges fast enough without stagnation.
Název v anglickém jazyce
How to make Simpler GMRES and GCR more Stable
Popis výsledku anglicky
In this paper we analyze the numerical behavior of several minimum residual methods, which are mathematically equivalent to the GMRES method. Two main approaches are compared: the one that computes the approximate solution in terms of a Krylov space basis from an upper triangular linear system for the coordinates, and the one where the approximate solutions are updated with a simple recursion formula. We show that a different choice of the basis can significantly influence the numerical behavior of theresulting implementation. While Simpler GMRES and ORTHODIR are less stable due to the ill-conditioning of the basis used, the residual basis is well-conditioned as long as we have a reasonable residual norm decrease. These results lead to a new implementation, which is conditionally backward stable, and they explain the experimentally observed fact that the GCR method delivers very accurate approximate solutions when it converges fast enough without stagnation.
Klasifikace
Druh
Jx - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2008
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
SIAM Journal on Matrix Analysis and Applications
ISSN
0895-4798
e-ISSN
—
Svazek periodika
30
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
17
Strana od-do
—
Kód UT WoS článku
000263103700013
EID výsledku v databázi Scopus
—
Základní informace
Druh výsledku
Jx - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP
BA - Obecná matematika
Rok uplatnění
2008