Recurrent Neural Network Based Boolean Factor Analysis and its Application to Word Clustering
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F09%3A00321649" target="_blank" >RIV/67985807:_____/09:00321649 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Recurrent Neural Network Based Boolean Factor Analysis and its Application to Word Clustering
Popis výsledku v původním jazyce
Neural network based algorithm for word clustering as an extension of the neural network based Boolean factor analysis algorithm is introduced. Technique based on a Bayesian procedure has been developed to provide a complete description of factors in terms of component probability and to enhance the accuracy of classification of documents. Method is applied to two types of textual data on Neural Networks in two different languages.
Název v anglickém jazyce
Recurrent Neural Network Based Boolean Factor Analysis and its Application to Word Clustering
Popis výsledku anglicky
Neural network based algorithm for word clustering as an extension of the neural network based Boolean factor analysis algorithm is introduced. Technique based on a Bayesian procedure has been developed to provide a complete description of factors in terms of component probability and to enhance the accuracy of classification of documents. Method is applied to two types of textual data on Neural Networks in two different languages.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BB - Aplikovaná statistika, operační výzkum
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/1M0567" target="_blank" >1M0567: Centrum aplikované kybernetiky</a><br>
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2009
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Transactions on Neural Networks
ISSN
1045-9227
e-ISSN
—
Svazek periodika
20
Číslo periodika v rámci svazku
7
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
14
Strana od-do
—
Kód UT WoS článku
000267941800002
EID výsledku v databázi Scopus
—