Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Triangulation Heuristics for BN2O Networks

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F09%3A00327312" target="_blank" >RIV/67985807:_____/09:00327312 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/67985556:_____/09:00327312 RIV/61384399:31160/09:00033852

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Triangulation Heuristics for BN2O Networks

  • Popis výsledku v původním jazyce

    A BN2O network is a Bayesian network having the structure of a bipartite graph with all edges directed from one part (the top level) toward the other (the bottom level) and where all conditional probability tables are noisy-or gates. In order to performefficient inference, graphical transformations of these networks are performed. The complexity of inference is proportional to the total table size of tables corresponding to the cliques of the triangulated graph. Therefore in order to get efficient inference it is desirable to have small cliques in the triangulated graph. We analyze existing heuristic triangulation methods applicable to BN2O networks after transformations using parent divorcing and tensor rank-one decomposition and suggest several modifications. Both theoretical and experimental results confirm that tensor rank-one decomposition yields better results than parent divorcing in randomly generated BN2O networks that we tested.

  • Název v anglickém jazyce

    Triangulation Heuristics for BN2O Networks

  • Popis výsledku anglicky

    A BN2O network is a Bayesian network having the structure of a bipartite graph with all edges directed from one part (the top level) toward the other (the bottom level) and where all conditional probability tables are noisy-or gates. In order to performefficient inference, graphical transformations of these networks are performed. The complexity of inference is proportional to the total table size of tables corresponding to the cliques of the triangulated graph. Therefore in order to get efficient inference it is desirable to have small cliques in the triangulated graph. We analyze existing heuristic triangulation methods applicable to BN2O networks after transformations using parent divorcing and tensor rank-one decomposition and suggest several modifications. Both theoretical and experimental results confirm that tensor rank-one decomposition yields better results than parent divorcing in randomly generated BN2O networks that we tested.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2009

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Symbolic and Quantitative Approaches to Reasoning with Uncertainty

  • ISBN

    978-3-642-02905-9

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    12

  • Strana od-do

  • Název nakladatele

    Springer

  • Místo vydání

    Berlin

  • Místo konání akce

    Verona

  • Datum konání akce

    1. 7. 2009

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000268585700049