Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Estimation of Boolean Factor Analysis Performance by Informational Gain

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F10%3A00335028" target="_blank" >RIV/67985807:_____/10:00335028 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Estimation of Boolean Factor Analysis Performance by Informational Gain

  • Popis výsledku v původním jazyce

    To evaluate the soundness of multidimensional binary signal analysis based on Boolean factor analysis theory and mainly of its neural network implementation, proposed is a universal measure - informational gain. This measure is derived using classical informational theory results. Neural network based Boolean factor analysis method efficiency is demonstrated using this measure, both when applied to Bars Problem benchmark data and to real textual data. It is shown that when applied to the well defined Bars Problem data, Boolean factor analysis provides informational gain close to its maximum, i.e. the latent structure of the testing images data was revealed with the maximal accuracy. For scientific origin real textual data the informational gain provided by the method happened to be much higher comparing to that based on human experts proposal.

  • Název v anglickém jazyce

    Estimation of Boolean Factor Analysis Performance by Informational Gain

  • Popis výsledku anglicky

    To evaluate the soundness of multidimensional binary signal analysis based on Boolean factor analysis theory and mainly of its neural network implementation, proposed is a universal measure - informational gain. This measure is derived using classical informational theory results. Neural network based Boolean factor analysis method efficiency is demonstrated using this measure, both when applied to Bars Problem benchmark data and to real textual data. It is shown that when applied to the well defined Bars Problem data, Boolean factor analysis provides informational gain close to its maximum, i.e. the latent structure of the testing images data was revealed with the maximal accuracy. For scientific origin real textual data the informational gain provided by the method happened to be much higher comparing to that based on human experts proposal.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    BB - Aplikovaná statistika, operační výzkum

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2010

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Advances in Intelligent Web Mastering - 2

  • ISBN

    978-3-642-10686-6

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    12

  • Strana od-do

  • Název nakladatele

    Springer

  • Místo vydání

    Berlin

  • Místo konání akce

    Prague

  • Datum konání akce

    9. 9. 2009

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku