Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Some Comparisons of Model Complexity in Linear and Neural-Network Approximation

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F10%3A00345940" target="_blank" >RIV/67985807:_____/10:00345940 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Some Comparisons of Model Complexity in Linear and Neural-Network Approximation

  • Popis výsledku v původním jazyce

    Capabilities of linear and neural-network models are compared from the point of view of requirements on the growth of model complexity with an increasing accuracy of approximation. The bounds are formulated in terms of singular numbers of certain operators induced by computational units and high-dimensional volumes of the domains of the functions to be approximated.

  • Název v anglickém jazyce

    Some Comparisons of Model Complexity in Linear and Neural-Network Approximation

  • Popis výsledku anglicky

    Capabilities of linear and neural-network models are compared from the point of view of requirements on the growth of model complexity with an increasing accuracy of approximation. The bounds are formulated in terms of singular numbers of certain operators induced by computational units and high-dimensional volumes of the domains of the functions to be approximated.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    IN - Informatika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/OC10047" target="_blank" >OC10047: Analýza inteligentních distribuovaných výpočetních systémů</a><br>

  • Návaznosti

    Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2010

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Artificial Neural Networks ? ICANN 2010

  • ISBN

    978-3-642-15824-7

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    10

  • Strana od-do

  • Název nakladatele

    Springer

  • Místo vydání

    Berlin

  • Místo konání akce

    Thessaloniki

  • Datum konání akce

    15. 9. 2010

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku