Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Two Ways of using Artifiial Neural Networks in Knowledge Discovery from Chemical Materials Data

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F10%3A00348388" target="_blank" >RIV/67985807:_____/10:00348388 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Two Ways of using Artifiial Neural Networks in Knowledge Discovery from Chemical Materials Data

  • Popis výsledku v původním jazyce

    In the application area of chemical materials, data mining methods have been used for more than a decade. By far most popular have from the very beginning been methods based on artificial neural networks. However, they are frequently used without awareness of the difference between the numeric nature of knowledge obtained from data by neural network regression, and the symbolic nature of knowledge obtained by some other data mining methods. This paper explains that within the surrogate modelling approach, which plays an important role in this area, using numeric knowledge is justified. At the same time, it recalls the possibility to obtain symbolic knowledge from neural networks in the form of logical rules and describes a recently proposed method forthe extraction of Boolean rules in disjunctive normal form. Both ways of using neural networks are illustrated on examples from this application area.

  • Název v anglickém jazyce

    Two Ways of using Artifiial Neural Networks in Knowledge Discovery from Chemical Materials Data

  • Popis výsledku anglicky

    In the application area of chemical materials, data mining methods have been used for more than a decade. By far most popular have from the very beginning been methods based on artificial neural networks. However, they are frequently used without awareness of the difference between the numeric nature of knowledge obtained from data by neural network regression, and the symbolic nature of knowledge obtained by some other data mining methods. This paper explains that within the surrogate modelling approach, which plays an important role in this area, using numeric knowledge is justified. At the same time, it recalls the possibility to obtain symbolic knowledge from neural networks in the form of logical rules and describes a recently proposed method forthe extraction of Boolean rules in disjunctive normal form. Both ways of using neural networks are illustrated on examples from this application area.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    IN - Informatika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA201%2F08%2F1744" target="_blank" >GA201/08/1744: Složitost perceptronových a jádrových sítí</a><br>

  • Návaznosti

    Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2010

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Information Technologies - Applications and Theory

  • ISBN

    978-80-970179-4-1

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    8

  • Strana od-do

  • Název nakladatele

    Pont

  • Místo vydání

    Seňa

  • Místo konání akce

    Smrekovica

  • Datum konání akce

    21. 9. 2010

  • Typ akce podle státní příslušnosti

    EUR - Evropská akce

  • Kód UT WoS článku