Two Ways of using Artifiial Neural Networks in Knowledge Discovery from Chemical Materials Data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F10%3A00348388" target="_blank" >RIV/67985807:_____/10:00348388 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Two Ways of using Artifiial Neural Networks in Knowledge Discovery from Chemical Materials Data
Popis výsledku v původním jazyce
In the application area of chemical materials, data mining methods have been used for more than a decade. By far most popular have from the very beginning been methods based on artificial neural networks. However, they are frequently used without awareness of the difference between the numeric nature of knowledge obtained from data by neural network regression, and the symbolic nature of knowledge obtained by some other data mining methods. This paper explains that within the surrogate modelling approach, which plays an important role in this area, using numeric knowledge is justified. At the same time, it recalls the possibility to obtain symbolic knowledge from neural networks in the form of logical rules and describes a recently proposed method forthe extraction of Boolean rules in disjunctive normal form. Both ways of using neural networks are illustrated on examples from this application area.
Název v anglickém jazyce
Two Ways of using Artifiial Neural Networks in Knowledge Discovery from Chemical Materials Data
Popis výsledku anglicky
In the application area of chemical materials, data mining methods have been used for more than a decade. By far most popular have from the very beginning been methods based on artificial neural networks. However, they are frequently used without awareness of the difference between the numeric nature of knowledge obtained from data by neural network regression, and the symbolic nature of knowledge obtained by some other data mining methods. This paper explains that within the surrogate modelling approach, which plays an important role in this area, using numeric knowledge is justified. At the same time, it recalls the possibility to obtain symbolic knowledge from neural networks in the form of logical rules and describes a recently proposed method forthe extraction of Boolean rules in disjunctive normal form. Both ways of using neural networks are illustrated on examples from this application area.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA201%2F08%2F1744" target="_blank" >GA201/08/1744: Složitost perceptronových a jádrových sítí</a><br>
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2010
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Information Technologies - Applications and Theory
ISBN
978-80-970179-4-1
ISSN
—
e-ISSN
—
Počet stran výsledku
8
Strana od-do
—
Název nakladatele
Pont
Místo vydání
Seňa
Místo konání akce
Smrekovica
Datum konání akce
21. 9. 2010
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
—