Rules extraction from neural networks trained on multimedia data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F19%3A00512089" target="_blank" >RIV/67985807:_____/19:00512089 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21240/19:00334955 RIV/68407700:21340/19:00334955
Výsledek na webu
<a href="http://ceur-ws.org/Vol-2473/paper4.pdf" target="_blank" >http://ceur-ws.org/Vol-2473/paper4.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Rules extraction from neural networks trained on multimedia data
Popis výsledku v původním jazyce
Since the universal approximation property of artificial neural networks was discovered in the late 1980s, i.e., their capability to arbitrarily well approximate nearly arbitrary relationships and dependences, a full exploitation of this property has been always hindered by the very low human-comprehensibility of the purely numerical representation that neural networks use for such relationships and dependences. The mainstream of attempts to mitigate that incomprehensibility are methods extracting, from the numerical representation, rules of some formal logic, which are in general viewed as human-comprehensible. Many dozens of such methods have already been proposed since the 1980s, differing in a number of diverse aspects. Due to that diversity, and also due to a close connection of the semantics of extracted rules to the repsective application domain, no rules extraction methods have ever become a standard, and it is always necessary to select a suitable method for the considered domain. Here, rules extraction from trained neural networks is employed for multimedia data, which is an increasingly important but also increasingly complex kind of data. Three particular rules extraction methods are considered and applied to the modalities recognized text data and the speech acoustic data, both of them with different subsets of features. A detailed comparison of the performance of the considered methods on those datasets is presented, and a statistical analysis of the obtained results is performed.n
Název v anglickém jazyce
Rules extraction from neural networks trained on multimedia data
Popis výsledku anglicky
Since the universal approximation property of artificial neural networks was discovered in the late 1980s, i.e., their capability to arbitrarily well approximate nearly arbitrary relationships and dependences, a full exploitation of this property has been always hindered by the very low human-comprehensibility of the purely numerical representation that neural networks use for such relationships and dependences. The mainstream of attempts to mitigate that incomprehensibility are methods extracting, from the numerical representation, rules of some formal logic, which are in general viewed as human-comprehensible. Many dozens of such methods have already been proposed since the 1980s, differing in a number of diverse aspects. Due to that diversity, and also due to a close connection of the semantics of extracted rules to the repsective application domain, no rules extraction methods have ever become a standard, and it is always necessary to select a suitable method for the considered domain. Here, rules extraction from trained neural networks is employed for multimedia data, which is an increasingly important but also increasingly complex kind of data. Three particular rules extraction methods are considered and applied to the modalities recognized text data and the speech acoustic data, both of them with different subsets of features. A detailed comparison of the performance of the considered methods on those datasets is presented, and a statistical analysis of the obtained results is performed.n
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-18080S" target="_blank" >GA18-18080S: Objevování znalostí v datech o aktivitě člověka založené na fúzi</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
ITAT 2019: Information Technologies – Applications and Theory
ISBN
—
ISSN
1613-0073
e-ISSN
—
Počet stran výsledku
10
Strana od-do
26-35
Název nakladatele
Technical University & CreateSpace Independent Publishing
Místo vydání
Aachen
Místo konání akce
Donovaly
Datum konání akce
20. 9. 2019
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
—