Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Rules extraction from neural networks trained on multimedia data

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F19%3A00512089" target="_blank" >RIV/67985807:_____/19:00512089 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/68407700:21240/19:00334955 RIV/68407700:21340/19:00334955

  • Výsledek na webu

    <a href="http://ceur-ws.org/Vol-2473/paper4.pdf" target="_blank" >http://ceur-ws.org/Vol-2473/paper4.pdf</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Rules extraction from neural networks trained on multimedia data

  • Popis výsledku v původním jazyce

    Since the universal approximation property of artificial neural networks was discovered in the late 1980s, i.e., their capability to arbitrarily well approximate nearly arbitrary relationships and dependences, a full exploitation of this property has been always hindered by the very low human-comprehensibility of the purely numerical representation that neural networks use for such relationships and dependences. The mainstream of attempts to mitigate that incomprehensibility are methods extracting, from the numerical representation, rules of some formal logic, which are in general viewed as human-comprehensible. Many dozens of such methods have already been proposed since the 1980s, differing in a number of diverse aspects. Due to that diversity, and also due to a close connection of the semantics of extracted rules to the repsective application domain, no rules extraction methods have ever become a standard, and it is always necessary to select a suitable method for the considered domain. Here, rules extraction from trained neural networks is employed for multimedia data, which is an increasingly important but also increasingly complex kind of data. Three particular rules extraction methods are considered and applied to the modalities recognized text data and the speech acoustic data, both of them with different subsets of features. A detailed comparison of the performance of the considered methods on those datasets is presented, and a statistical analysis of the obtained results is performed.n

  • Název v anglickém jazyce

    Rules extraction from neural networks trained on multimedia data

  • Popis výsledku anglicky

    Since the universal approximation property of artificial neural networks was discovered in the late 1980s, i.e., their capability to arbitrarily well approximate nearly arbitrary relationships and dependences, a full exploitation of this property has been always hindered by the very low human-comprehensibility of the purely numerical representation that neural networks use for such relationships and dependences. The mainstream of attempts to mitigate that incomprehensibility are methods extracting, from the numerical representation, rules of some formal logic, which are in general viewed as human-comprehensible. Many dozens of such methods have already been proposed since the 1980s, differing in a number of diverse aspects. Due to that diversity, and also due to a close connection of the semantics of extracted rules to the repsective application domain, no rules extraction methods have ever become a standard, and it is always necessary to select a suitable method for the considered domain. Here, rules extraction from trained neural networks is employed for multimedia data, which is an increasingly important but also increasingly complex kind of data. Three particular rules extraction methods are considered and applied to the modalities recognized text data and the speech acoustic data, both of them with different subsets of features. A detailed comparison of the performance of the considered methods on those datasets is presented, and a statistical analysis of the obtained results is performed.n

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA18-18080S" target="_blank" >GA18-18080S: Objevování znalostí v datech o aktivitě člověka založené na fúzi</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    ITAT 2019: Information Technologies – Applications and Theory

  • ISBN

  • ISSN

    1613-0073

  • e-ISSN

  • Počet stran výsledku

    10

  • Strana od-do

    26-35

  • Název nakladatele

    Technical University & CreateSpace Independent Publishing

  • Místo vydání

    Aachen

  • Místo konání akce

    Donovaly

  • Datum konání akce

    20. 9. 2019

  • Typ akce podle státní příslušnosti

    EUR - Evropská akce

  • Kód UT WoS článku