Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Inverse Problems in Learning from Data

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F10%3A00349057" target="_blank" >RIV/67985807:_____/10:00349057 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Inverse Problems in Learning from Data

  • Popis výsledku v původním jazyce

    It is shown that application of methods from theory of inverse problems to learning from data leads to simple proofs of characterization of minima of empirical and expected error functionals and their regularized versions. The reformulation of learning in terms of inverse problems also enables comparison of regularized and non regularized case showing that regularization achieves stability by merely modifying output weights of global minima. Methods of theory of inverse problems lead to choice of reproducing kernel Hilbert spaces as suitable ambient function spaces.

  • Název v anglickém jazyce

    Inverse Problems in Learning from Data

  • Popis výsledku anglicky

    It is shown that application of methods from theory of inverse problems to learning from data leads to simple proofs of characterization of minima of empirical and expected error functionals and their regularized versions. The reformulation of learning in terms of inverse problems also enables comparison of regularized and non regularized case showing that regularization achieves stability by merely modifying output weights of global minima. Methods of theory of inverse problems lead to choice of reproducing kernel Hilbert spaces as suitable ambient function spaces.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    IN - Informatika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/OC10047" target="_blank" >OC10047: Analýza inteligentních distribuovaných výpočetních systémů</a><br>

  • Návaznosti

    Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2010

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    ICNC 2010. Proceedings of the International Conference on Neural Computation

  • ISBN

    978-989-8425-32-4

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    6

  • Strana od-do

  • Název nakladatele

    SciTePress

  • Místo vydání

    Setúbal

  • Místo konání akce

    Valencia

  • Datum konání akce

    24. 8. 2010

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku