The Importance of Structure in Incomplete Factorization Preconditioners
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F11%3A00351679" target="_blank" >RIV/67985807:_____/11:00351679 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/s10543-010-0299-8" target="_blank" >http://dx.doi.org/10.1007/s10543-010-0299-8</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10543-010-0299-8" target="_blank" >10.1007/s10543-010-0299-8</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The Importance of Structure in Incomplete Factorization Preconditioners
Popis výsledku v původním jazyce
In this paper, we consider level-based preconditioning, which is one of the basic approaches to incomplete factorization preconditioning of iterative methods. It is well-known that while structure-based preconditioners can be very useful, excessive memory demands can limit their usefulness. Here we present an improved strategy that considers the individual entries of the system matrix and restricts small entries to contributing to fewer levels of fill than the largest entries. Using symmetric positive-definite problems arising from a wide range of practical applications, we show that the use of variable levels of fill can yield incomplete Cholesky factorization preconditioners that are more efficient than those resulting from the standard level-based approach. Further numerical results demonstrate that our level-based approach can lead to much sparser but efficient incomplete factorization preconditioners.
Název v anglickém jazyce
The Importance of Structure in Incomplete Factorization Preconditioners
Popis výsledku anglicky
In this paper, we consider level-based preconditioning, which is one of the basic approaches to incomplete factorization preconditioning of iterative methods. It is well-known that while structure-based preconditioners can be very useful, excessive memory demands can limit their usefulness. Here we present an improved strategy that considers the individual entries of the system matrix and restricts small entries to contributing to fewer levels of fill than the largest entries. Using symmetric positive-definite problems arising from a wide range of practical applications, we show that the use of variable levels of fill can yield incomplete Cholesky factorization preconditioners that are more efficient than those resulting from the standard level-based approach. Further numerical results demonstrate that our level-based approach can lead to much sparser but efficient incomplete factorization preconditioners.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2011
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Bit
ISSN
0006-3835
e-ISSN
—
Svazek periodika
51
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
SE - Švédské království
Počet stran výsledku
20
Strana od-do
385-404
Kód UT WoS článku
000291482000008
EID výsledku v databázi Scopus
—