Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Evaluation of Categorical Data Clustering

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F11%3A00356106" target="_blank" >RIV/67985807:_____/11:00356106 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/61384399:31140/11:00036040

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Evaluation of Categorical Data Clustering

  • Popis výsledku v původním jazyce

    Methods of cluster analysis are well known techniques of multivariate analysis used for many years. Their main applications concern clustering objects characterized by quantitative variables. For this case various coefficients for clustering evaluation and determination of cluster numbers have been proposed. However, in some areas, i.e., for segmentation of Internet users, the variables are often nominal or ordinal as their origin in questionnaire responses. That is why we are dealing with the evaluation criteria for the case of categorical variables here. The criteria based on variability measures are proposed. Instead of variance as a measure for quantitative variables, three measures for nominal variables are considered: the variability measure based on a modal frequency, Gini?s coefficient of mutability, and the entropy. The proposed evaluation criteria are applied to a real-dataset.

  • Název v anglickém jazyce

    Evaluation of Categorical Data Clustering

  • Popis výsledku anglicky

    Methods of cluster analysis are well known techniques of multivariate analysis used for many years. Their main applications concern clustering objects characterized by quantitative variables. For this case various coefficients for clustering evaluation and determination of cluster numbers have been proposed. However, in some areas, i.e., for segmentation of Internet users, the variables are often nominal or ordinal as their origin in questionnaire responses. That is why we are dealing with the evaluation criteria for the case of categorical variables here. The criteria based on variability measures are proposed. Instead of variance as a measure for quantitative variables, three measures for nominal variables are considered: the variability measure based on a modal frequency, Gini?s coefficient of mutability, and the entropy. The proposed evaluation criteria are applied to a real-dataset.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    BB - Aplikovaná statistika, operační výzkum

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2011

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Advances in Intelligent Web Mastering - 3

  • ISBN

    978-3-642-18028-6

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    10

  • Strana od-do

  • Název nakladatele

    Springer

  • Místo vydání

    Berlin

  • Místo konání akce

    Fribourg

  • Datum konání akce

    26. 1. 2011

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku