Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Functional connectivity in resting-state fMRI: Is linear correlation sufficient?

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F11%3A00356655" target="_blank" >RIV/67985807:_____/11:00356655 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Functional connectivity in resting-state fMRI: Is linear correlation sufficient?

  • Popis výsledku v původním jazyce

    Functional connectivity (FC) analysis is a prominent approach to analyzing fMRI data, especially acquired in resting state. The commonly used linear correlation bears an implicit assumption of Gaussianity of the dependence structure. To assess the suitability of linear correlation and the general potential of nonlinear FC measures, we present a framework for testing and estimating the deviation from Gaussianity by comparing mutual information in the data and its Gaussianized counterpart. We apply this method to 24 sessions of human resting state fMRI. While the group-level tests confirmed non-Gaussianity in the FC, the quantitative assessment revealed that the portion of mutual information neglected by linear correlation is relatively minor - on average only about 5% of the total mutual information. We conclude that for this type of data, practical relevance of nonlinear methods trying to improve over linear correlation is limited by the fact that the data are almost Gaussian.

  • Název v anglickém jazyce

    Functional connectivity in resting-state fMRI: Is linear correlation sufficient?

  • Popis výsledku anglicky

    Functional connectivity (FC) analysis is a prominent approach to analyzing fMRI data, especially acquired in resting state. The commonly used linear correlation bears an implicit assumption of Gaussianity of the dependence structure. To assess the suitability of linear correlation and the general potential of nonlinear FC measures, we present a framework for testing and estimating the deviation from Gaussianity by comparing mutual information in the data and its Gaussianized counterpart. We apply this method to 24 sessions of human resting state fMRI. While the group-level tests confirmed non-Gaussianity in the FC, the quantitative assessment revealed that the portion of mutual information neglected by linear correlation is relatively minor - on average only about 5% of the total mutual information. We conclude that for this type of data, practical relevance of nonlinear methods trying to improve over linear correlation is limited by the fact that the data are almost Gaussian.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    FH - Neurologie, neurochirurgie, neurovědy

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/7E08027" target="_blank" >7E08027: Large scale interactions in brain networks and their breakdown in brain diseases</a><br>

  • Návaznosti

    Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2011

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Neuroimage

  • ISSN

    1053-8119

  • e-ISSN

  • Svazek periodika

    54

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    8

  • Strana od-do

  • Kód UT WoS článku

    000286302000044

  • EID výsledku v databázi Scopus