Functional connectivity in resting-state fMRI: Is linear correlation sufficient?
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F11%3A00356655" target="_blank" >RIV/67985807:_____/11:00356655 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Functional connectivity in resting-state fMRI: Is linear correlation sufficient?
Popis výsledku v původním jazyce
Functional connectivity (FC) analysis is a prominent approach to analyzing fMRI data, especially acquired in resting state. The commonly used linear correlation bears an implicit assumption of Gaussianity of the dependence structure. To assess the suitability of linear correlation and the general potential of nonlinear FC measures, we present a framework for testing and estimating the deviation from Gaussianity by comparing mutual information in the data and its Gaussianized counterpart. We apply this method to 24 sessions of human resting state fMRI. While the group-level tests confirmed non-Gaussianity in the FC, the quantitative assessment revealed that the portion of mutual information neglected by linear correlation is relatively minor - on average only about 5% of the total mutual information. We conclude that for this type of data, practical relevance of nonlinear methods trying to improve over linear correlation is limited by the fact that the data are almost Gaussian.
Název v anglickém jazyce
Functional connectivity in resting-state fMRI: Is linear correlation sufficient?
Popis výsledku anglicky
Functional connectivity (FC) analysis is a prominent approach to analyzing fMRI data, especially acquired in resting state. The commonly used linear correlation bears an implicit assumption of Gaussianity of the dependence structure. To assess the suitability of linear correlation and the general potential of nonlinear FC measures, we present a framework for testing and estimating the deviation from Gaussianity by comparing mutual information in the data and its Gaussianized counterpart. We apply this method to 24 sessions of human resting state fMRI. While the group-level tests confirmed non-Gaussianity in the FC, the quantitative assessment revealed that the portion of mutual information neglected by linear correlation is relatively minor - on average only about 5% of the total mutual information. We conclude that for this type of data, practical relevance of nonlinear methods trying to improve over linear correlation is limited by the fact that the data are almost Gaussian.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
FH - Neurologie, neurochirurgie, neurovědy
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/7E08027" target="_blank" >7E08027: Large scale interactions in brain networks and their breakdown in brain diseases</a><br>
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2011
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Neuroimage
ISSN
1053-8119
e-ISSN
—
Svazek periodika
54
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
8
Strana od-do
—
Kód UT WoS článku
000286302000044
EID výsledku v databázi Scopus
—