The Role of Nonlinearity in Computing Graph-Theoretical Properties of Resting-State Functional Magnetic Resonance Imaging Brain Networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F11%3A00358939" target="_blank" >RIV/67985807:_____/11:00358939 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1063/1.3553181" target="_blank" >http://dx.doi.org/10.1063/1.3553181</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/1.3553181" target="_blank" >10.1063/1.3553181</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The Role of Nonlinearity in Computing Graph-Theoretical Properties of Resting-State Functional Magnetic Resonance Imaging Brain Networks
Popis výsledku v původním jazyce
We present a comparison of network analysis results for the brain connectivity graphs capturing either linear and nonlinear or only linear connectivity using 24 sessions of human resting-state fMRI. For comparison, connectivity matrices for multivariatelinear Gaussian surrogate data preserving the correlations, but removing any nonlinearity are generated. Subsequent binarization with multiple thresholds generate graphs corresponding to linear and full nonlinear interactions. The effect of neglecting nonlinearity is then assessed by comparing the values of a range of graph-theoretical measures evaluated for both types of graphs. Statistical comparisons suggest a potential effect of nonlinearity on the local measures - clustering coefficient and betweenness centrality. A subsequent quantitative comparison shows that this effect is practically negligible when compared to the intersubject variability. Further, on the group-average graph level, the nonlinearity effect is unnoticeable.
Název v anglickém jazyce
The Role of Nonlinearity in Computing Graph-Theoretical Properties of Resting-State Functional Magnetic Resonance Imaging Brain Networks
Popis výsledku anglicky
We present a comparison of network analysis results for the brain connectivity graphs capturing either linear and nonlinear or only linear connectivity using 24 sessions of human resting-state fMRI. For comparison, connectivity matrices for multivariatelinear Gaussian surrogate data preserving the correlations, but removing any nonlinearity are generated. Subsequent binarization with multiple thresholds generate graphs corresponding to linear and full nonlinear interactions. The effect of neglecting nonlinearity is then assessed by comparing the values of a range of graph-theoretical measures evaluated for both types of graphs. Statistical comparisons suggest a potential effect of nonlinearity on the local measures - clustering coefficient and betweenness centrality. A subsequent quantitative comparison shows that this effect is practically negligible when compared to the intersubject variability. Further, on the group-average graph level, the nonlinearity effect is unnoticeable.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BB - Aplikovaná statistika, operační výzkum
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/7E08027" target="_blank" >7E08027: Large scale interactions in brain networks and their breakdown in brain diseases</a><br>
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2011
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Chaos
ISSN
1054-1500
e-ISSN
—
Svazek periodika
21
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
13
Strana od-do
"art.no 013119"
Kód UT WoS článku
000289149100019
EID výsledku v databázi Scopus
—