Deductive Systems of Fuzzy Logic
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F11%3A00379794" target="_blank" >RIV/67985807:_____/11:00379794 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-94-007-0080-2_5" target="_blank" >http://dx.doi.org/10.1007/978-94-007-0080-2_5</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-94-007-0080-2_5" target="_blank" >10.1007/978-94-007-0080-2_5</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Deductive Systems of Fuzzy Logic
Popis výsledku v původním jazyce
Lotfi Zadeh is the author of the theory of fuzzy sets. A fuzzy subset A of a (crisp) set X is characterized by assigning to each element x of X the degree of membership of x in A In particular, if X is a set of propositions then its elements may be assigned their degree of truth, which may be ?absolutely true, ?absolutely false or some intermediate truth degree: a proposition may be more true than another proposition. This is obvious in the case of vague (imprecise) propositions like ?this person is old(beautiful, rich, etc.). And this leads to fuzzy logic. In the analogy to various definitions of operations on fuzzy sets (intersection, union, complement,) one may ask how propositions can be combined by connectives (conjunction, disjunction, negation,) and if the truth degree of a composed proposition is determined by the truth degrees of its components, i.e. if the connectives have their corresponding truth functions (like truth tables of classical logic). Saying ?yes (which is the m
Název v anglickém jazyce
Deductive Systems of Fuzzy Logic
Popis výsledku anglicky
Lotfi Zadeh is the author of the theory of fuzzy sets. A fuzzy subset A of a (crisp) set X is characterized by assigning to each element x of X the degree of membership of x in A In particular, if X is a set of propositions then its elements may be assigned their degree of truth, which may be ?absolutely true, ?absolutely false or some intermediate truth degree: a proposition may be more true than another proposition. This is obvious in the case of vague (imprecise) propositions like ?this person is old(beautiful, rich, etc.). And this leads to fuzzy logic. In the analogy to various definitions of operations on fuzzy sets (intersection, union, complement,) one may ask how propositions can be combined by connectives (conjunction, disjunction, negation,) and if the truth degree of a composed proposition is determined by the truth degrees of its components, i.e. if the connectives have their corresponding truth functions (like truth tables of classical logic). Saying ?yes (which is the m
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/IAA100300503" target="_blank" >IAA100300503: Matematické základy inference a rozhodování za nejistoty</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2011
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
Proof, Computation and Agency. Logic at the Crossroad
ISBN
978-94-007-0079-6
Počet stran výsledku
12
Strana od-do
67-78
Počet stran knihy
400
Název nakladatele
Springer
Místo vydání
Dordrecht
Kód UT WoS kapitoly
—