Reliability of Inference of Directed Climate Networks Using Conditional Mutual Information
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F13%3A00393073" target="_blank" >RIV/67985807:_____/13:00393073 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.3390/e15062023" target="_blank" >http://dx.doi.org/10.3390/e15062023</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/e15062023" target="_blank" >10.3390/e15062023</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Reliability of Inference of Directed Climate Networks Using Conditional Mutual Information
Popis výsledku v původním jazyce
Across geosciences, many investigated phenomena relate to specific complex systems consisting of intricately intertwined interacting subsystems. Such dynamical complex systems can be represented by a directed graph, where each link denotes an existence of a causal relation, or information exchange between the nodes. For geophysical systems such as global climate, these relations are commonly not theoretically known but estimated from recorded data using causality analysis methods. These include bivariate nonlinear methods based on information theory and their linear counterpart. The trade-off between the valuable sensitivity of nonlinear methods to more general interactions and the potentially higher numerical reliability of linear methods may affect inference regarding structure and variability of climate networks. We investigate the reliability of directed climate networks detected by selected methods and parameter settings, using a stationarized model of dimensionality-reduced surfa
Název v anglickém jazyce
Reliability of Inference of Directed Climate Networks Using Conditional Mutual Information
Popis výsledku anglicky
Across geosciences, many investigated phenomena relate to specific complex systems consisting of intricately intertwined interacting subsystems. Such dynamical complex systems can be represented by a directed graph, where each link denotes an existence of a causal relation, or information exchange between the nodes. For geophysical systems such as global climate, these relations are commonly not theoretically known but estimated from recorded data using causality analysis methods. These include bivariate nonlinear methods based on information theory and their linear counterpart. The trade-off between the valuable sensitivity of nonlinear methods to more general interactions and the potentially higher numerical reliability of linear methods may affect inference regarding structure and variability of climate networks. We investigate the reliability of directed climate networks detected by selected methods and parameter settings, using a stationarized model of dimensionality-reduced surfa
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BB - Aplikovaná statistika, operační výzkum
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GCP103%2F11%2FJ068" target="_blank" >GCP103/11/J068: Interakce, přenos informace a složité struktury v dynamice měnícího se klimatu</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Entropy
ISSN
1099-4300
e-ISSN
—
Svazek periodika
15
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
23
Strana od-do
2023-2045
Kód UT WoS článku
000320773000005
EID výsledku v databázi Scopus
—