Brain-Computer Interface Based on Motor Imagery: the Most Relevant Sources of Electrical Brain Activity
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F14%3A00398560" target="_blank" >RIV/67985807:_____/14:00398560 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27240/14:86096546 RIV/61989100:27740/14:86096546
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-319-00930-8_14" target="_blank" >http://dx.doi.org/10.1007/978-3-319-00930-8_14</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-00930-8_14" target="_blank" >10.1007/978-3-319-00930-8_14</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Brain-Computer Interface Based on Motor Imagery: the Most Relevant Sources of Electrical Brain Activity
Popis výsledku v původním jazyce
Examined are sources of brain activity, contributing to EEG patterns which correspond to motor imagery during training to control brain-computer interface (BCI). To identify individual source contribution into EEG recorded during the training, Independent Component Analysis (ICA) was employed. Those independent components, for which the BCI system classification accuracy was at maximum, were treated as relevant to performing the motor imagery tasks. To reveal neurophysiological nature of these components we solved the inverse EEG problem in order to localize the sources of brain activity causing these components to appear in EEG. Individual geometry of brain and its covers provided by anatomical MR images, was taken into account when localizing the sources. Their positions were compared with foci of BOLD activity obtained in fMRI study.
Název v anglickém jazyce
Brain-Computer Interface Based on Motor Imagery: the Most Relevant Sources of Electrical Brain Activity
Popis výsledku anglicky
Examined are sources of brain activity, contributing to EEG patterns which correspond to motor imagery during training to control brain-computer interface (BCI). To identify individual source contribution into EEG recorded during the training, Independent Component Analysis (ICA) was employed. Those independent components, for which the BCI system classification accuracy was at maximum, were treated as relevant to performing the motor imagery tasks. To reveal neurophysiological nature of these components we solved the inverse EEG problem in order to localize the sources of brain activity causing these components to appear in EEG. Individual geometry of brain and its covers provided by anatomical MR images, was taken into account when localizing the sources. Their positions were compared with foci of BOLD activity obtained in fMRI study.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/ED1.1.00%2F02.0070" target="_blank" >ED1.1.00/02.0070: Centrum excelence IT4Innovations</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Soft Computing in Industrial Applications
ISBN
978-3-319-00929-2
ISSN
2194-5357
e-ISSN
—
Počet stran výsledku
11
Strana od-do
153-163
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
Anywhere on Earth
Datum konání akce
10. 12. 2012
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—