Clustering the Sources of EEG Activity during Motor Imagery by Attractor Neural Network with Increasing Activity (ANNIA)
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F14%3A00429364" target="_blank" >RIV/67985807:_____/14:00429364 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-319-08156-4_19" target="_blank" >http://dx.doi.org/10.1007/978-3-319-08156-4_19</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-08156-4_19" target="_blank" >10.1007/978-3-319-08156-4_19</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Clustering the Sources of EEG Activity during Motor Imagery by Attractor Neural Network with Increasing Activity (ANNIA)
Popis výsledku v původním jazyce
Electrical brain activity in subjects controlling Brain-Computer Interface (BCI) based on motor imagery is studied. A used data set contains 7440 observations corresponding to distributions of electrical potential at the head surface obtained by Independent Component Analysis of 155 48-channel EEG recordings over 16 subjects. The distributions are interpreted as produced by the current dipolar sources inside the head. To reveal the sources of electrical brain activity the most typical for motor imagery,the corresponding ICA components were clustered by Attractor Neural Network with Increasing Activity (ANNIA). ANNIA was already successfully applied to clustering textual documents and genome data [8,11]. Among the expected clusters of components (blinks and mu-rhythm ERD) the ones reflecting the frontal and occipital cortex activity were also extracted. Although the cluster analysis can not substitute careful data examination and interpretation however it is a useful pre-processing ste
Název v anglickém jazyce
Clustering the Sources of EEG Activity during Motor Imagery by Attractor Neural Network with Increasing Activity (ANNIA)
Popis výsledku anglicky
Electrical brain activity in subjects controlling Brain-Computer Interface (BCI) based on motor imagery is studied. A used data set contains 7440 observations corresponding to distributions of electrical potential at the head surface obtained by Independent Component Analysis of 155 48-channel EEG recordings over 16 subjects. The distributions are interpreted as produced by the current dipolar sources inside the head. To reveal the sources of electrical brain activity the most typical for motor imagery,the corresponding ICA components were clustered by Attractor Neural Network with Increasing Activity (ANNIA). ANNIA was already successfully applied to clustering textual documents and genome data [8,11]. Among the expected clusters of components (blinks and mu-rhythm ERD) the ones reflecting the frontal and occipital cortex activity were also extracted. Although the cluster analysis can not substitute careful data examination and interpretation however it is a useful pre-processing ste
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the Fifth International Conference on Innovations in Bio-Inspired Computing and Applications IBICA 2014
ISBN
978-3-319-08155-7
ISSN
2194-5357
e-ISSN
—
Počet stran výsledku
9
Strana od-do
183-191
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
Ostrava
Datum konání akce
23. 6. 2014
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000342841800019