Modal Logics of Uncertainty with Two-Layer Syntax: A General Completeness Theorem
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F14%3A00431413" target="_blank" >RIV/67985807:_____/14:00431413 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/67985556:_____/14:00431413
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-662-44145-9_9" target="_blank" >http://dx.doi.org/10.1007/978-3-662-44145-9_9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-662-44145-9_9" target="_blank" >10.1007/978-3-662-44145-9_9</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Modal Logics of Uncertainty with Two-Layer Syntax: A General Completeness Theorem
Popis výsledku v původním jazyce
Modal logics with two syntactical layers (both governed by classical logic) have been proposed as logics of uncertainty following Hamblin's seminal idea of reading the modal operator P(A) as 'probably A', meaning that the probability of a formula A is bigger than a given threshold. An interesting departure from that (classical) paradigm has been introduced by Hajek with his fuzzy probability logic when, while still keeping classical logic as interpretation of the lower syntactical layer, he proposed touse Lukasiewicz logic in the upper one, so that the truth degree of P(A) could be directly identified with the probability of A. Later, other authors have used the same formalism with different kinds of uncertainty measures and other pairs of logics, allowing for a treatment of uncertainty of vague events (i.e. also changing the logic in the lower layer). The aim of this paper is to provide a general framework for two-layer modal logics that encompasses all the previously studied two-lay
Název v anglickém jazyce
Modal Logics of Uncertainty with Two-Layer Syntax: A General Completeness Theorem
Popis výsledku anglicky
Modal logics with two syntactical layers (both governed by classical logic) have been proposed as logics of uncertainty following Hamblin's seminal idea of reading the modal operator P(A) as 'probably A', meaning that the probability of a formula A is bigger than a given threshold. An interesting departure from that (classical) paradigm has been introduced by Hajek with his fuzzy probability logic when, while still keeping classical logic as interpretation of the lower syntactical layer, he proposed touse Lukasiewicz logic in the upper one, so that the truth degree of P(A) could be directly identified with the probability of A. Later, other authors have used the same formalism with different kinds of uncertainty measures and other pairs of logics, allowing for a treatment of uncertainty of vague events (i.e. also changing the logic in the lower layer). The aim of this paper is to provide a general framework for two-layer modal logics that encompasses all the previously studied two-lay
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GAP202%2F10%2F1826" target="_blank" >GAP202/10/1826: Matematická fuzzy logika v informatice</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Logic, Language, Information, and Computation
ISBN
978-3-662-44144-2
ISSN
0302-9743
e-ISSN
—
Počet stran výsledku
13
Strana od-do
124-136
Název nakladatele
Springer
Místo vydání
Heidelberg
Místo konání akce
Valparaíso
Datum konání akce
1. 9. 2014
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—