Preconditioned Iterative Methods for Solving Weighted Linear Least Squares Problems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F14%3A00432761" target="_blank" >RIV/67985807:_____/14:00432761 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1137/130931588" target="_blank" >http://dx.doi.org/10.1137/130931588</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1137/130931588" target="_blank" >10.1137/130931588</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Preconditioned Iterative Methods for Solving Weighted Linear Least Squares Problems
Popis výsledku v původním jazyce
New preconditioning strategies for solving m n overdetermined large and sparse linear least squares problems using the CGLS method are described. First, direct preconditioning of the normal equations by the Balanced Incomplete Factorization (BIF) for symmetric and positive definite matrices is studied and a new breakdown-free strategy is proposed. Preconditioning based on the incomplete LU factors of an n n submatrix of the system matrix is our second approach. A new way to find this submatrix based ona specific weighted transversal problem is proposed. Numerical experiments demonstrate different algebraic and implementational features of the new approaches and put them into the context of current progress in preconditioning of CGLS. It is shown, in particular, that the robustness demonstrated earlier by the BIF preconditioning strategy transfers into the linear least squares solvers and the use of the weighted transversal helps to improve the LU-based approach.
Název v anglickém jazyce
Preconditioned Iterative Methods for Solving Weighted Linear Least Squares Problems
Popis výsledku anglicky
New preconditioning strategies for solving m n overdetermined large and sparse linear least squares problems using the CGLS method are described. First, direct preconditioning of the normal equations by the Balanced Incomplete Factorization (BIF) for symmetric and positive definite matrices is studied and a new breakdown-free strategy is proposed. Preconditioning based on the incomplete LU factors of an n n submatrix of the system matrix is our second approach. A new way to find this submatrix based ona specific weighted transversal problem is proposed. Numerical experiments demonstrate different algebraic and implementational features of the new approaches and put them into the context of current progress in preconditioning of CGLS. It is shown, in particular, that the robustness demonstrated earlier by the BIF preconditioning strategy transfers into the linear least squares solvers and the use of the weighted transversal helps to improve the LU-based approach.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
SIAM Journal on Scientific Computing
ISSN
1064-8275
e-ISSN
—
Svazek periodika
36
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
21
Strana od-do
"A2002"-"A2022"
Kód UT WoS článku
000344743800028
EID výsledku v databázi Scopus
—