Several Results on Set-Valued Possibilistic Distributions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F15%3A00444153" target="_blank" >RIV/67985807:_____/15:00444153 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.14736/kyb-2015-3-0391" target="_blank" >http://dx.doi.org/10.14736/kyb-2015-3-0391</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.14736/kyb-2015-3-0391" target="_blank" >10.14736/kyb-2015-3-0391</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Several Results on Set-Valued Possibilistic Distributions
Popis výsledku v původním jazyce
When proposing and processing uncertainty decision-making algorithms of various kinds and purposes, we more and more often meet probability distributions ascribing non-numerical uncertainty degrees to random events. The reason is that we have to processsystems of uncertainties for which the classical conditions like sigma-additivity or linear ordering of values are too restrictive to define sufficiently closely the nature of uncertainty we would like to specify and process. In cases of non-numerical uncertainty degrees, at least the following two criteria may be considered. The first criterion should be systems with rather complicated, but sophisticated and nontrivially formally analyzable uncertainty degrees, e. g., uncertainties supported by some algebras or partially ordered structures. Contrarily, we may consider easier relations, which are non-numerical but interpretable on the intuitive level. Well-known examples of such structures are set-valued possibilistic measures. Some spe
Název v anglickém jazyce
Several Results on Set-Valued Possibilistic Distributions
Popis výsledku anglicky
When proposing and processing uncertainty decision-making algorithms of various kinds and purposes, we more and more often meet probability distributions ascribing non-numerical uncertainty degrees to random events. The reason is that we have to processsystems of uncertainties for which the classical conditions like sigma-additivity or linear ordering of values are too restrictive to define sufficiently closely the nature of uncertainty we would like to specify and process. In cases of non-numerical uncertainty degrees, at least the following two criteria may be considered. The first criterion should be systems with rather complicated, but sophisticated and nontrivially formally analyzable uncertainty degrees, e. g., uncertainties supported by some algebras or partially ordered structures. Contrarily, we may consider easier relations, which are non-numerical but interpretable on the intuitive level. Well-known examples of such structures are set-valued possibilistic measures. Some spe
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GAP202%2F10%2F1826" target="_blank" >GAP202/10/1826: Matematická fuzzy logika v informatice</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Kybernetika
ISSN
0023-5954
e-ISSN
—
Svazek periodika
51
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
17
Strana od-do
391-407
Kód UT WoS článku
000361266300002
EID výsledku v databázi Scopus
2-s2.0-84940036692