Evaluation of Association Rules Extracted during Anomaly Explanation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F15%3A00447917" target="_blank" >RIV/67985807:_____/15:00447917 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21240/15:00232443
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Evaluation of Association Rules Extracted during Anomaly Explanation
Popis výsledku v původním jazyce
Discovering anomalies within data is nowadays very important, because it helps to uncover interesting events. Consequently, a considerable amount of anomaly detection algorithms was proposed in the last few years. Only a few papers about anomaly detection at least mentioned why some samples were labelled as anomalous. Therefore, we proposed a method allowing to extract rules explaining the anomaly from an ensemble of specifically trained decision trees, called sapling random forest. Our method is able to interpret the output of an arbitrary anomaly detector. The explanation is given as conjunctions of atomic conditions, which can be viewed as antecedents of association rules. In this work we focus on selection, post processing and evaluation of those rules. The main goal is to present a small number of the most important rules. To achieve this, we use quality measures such as lift and confidence boost. The resulting sets of rules are experimentally and empirically evaluated on two arti
Název v anglickém jazyce
Evaluation of Association Rules Extracted during Anomaly Explanation
Popis výsledku anglicky
Discovering anomalies within data is nowadays very important, because it helps to uncover interesting events. Consequently, a considerable amount of anomaly detection algorithms was proposed in the last few years. Only a few papers about anomaly detection at least mentioned why some samples were labelled as anomalous. Therefore, we proposed a method allowing to extract rules explaining the anomaly from an ensemble of specifically trained decision trees, called sapling random forest. Our method is able to interpret the output of an arbitrary anomaly detector. The explanation is given as conjunctions of atomic conditions, which can be viewed as antecedents of association rules. In this work we focus on selection, post processing and evaluation of those rules. The main goal is to present a small number of the most important rules. To achieve this, we use quality measures such as lift and confidence boost. The resulting sets of rules are experimentally and empirically evaluated on two arti
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA13-17187S" target="_blank" >GA13-17187S: Konstrukce pokročilých srozumitelných klasifikátorů</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings ITAT 2015: Information Technologies - Applications and Theory
ISBN
978-1-5151-2065-0
ISSN
1613-0073
e-ISSN
—
Počet stran výsledku
7
Strana od-do
143-149
Název nakladatele
Technical University & CreateSpace Independent Publishing Platform
Místo vydání
Aachen & Charleston
Místo konání akce
Slovenský Raj
Datum konání akce
17. 9. 2015
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
—