Interpreting and clustering outliers with sapling random forests
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F14%3A00219641" target="_blank" >RIV/68407700:21230/14:00219641 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/67985807:_____/14:00432410 RIV/68407700:21240/14:00219641 RIV/68407700:21230/14:00219640 RIV/68407700:21240/14:00219640
Výsledek na webu
<a href="http://www.library.sk/i2/content.csg.cls?ictx=cav&repo=crepo1&key=88442135003" target="_blank" >http://www.library.sk/i2/content.csg.cls?ictx=cav&repo=crepo1&key=88442135003</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Interpreting and clustering outliers with sapling random forests
Popis výsledku v původním jazyce
The main objective of outlier detection is find- ing samples considerably deviating from the majority. Such outliers, often referred to as anomalies, are nowadays more and more important, because they help to uncover in- teresting events within data. Consequently, a considerable amount of statistical and data mining techniques to iden- tify anomalies was proposed in the last few years, but only a few works at least mentioned why some sample was la- belled as an anomaly. Therefore, we propose a method based on specifically trained decision trees, called sapling random forest. Our method is able to interpret the output of arbitrary anomaly detector. The explanation is given as a subset of features, in which the sample is most deviating, or as con- junctions of atomic conditions, which can be viewed as antecedents of logical rules easily understandable by hu- mans. To simplify the investigation of suspicious samples even more, we propose two methods of clustering anoma- lies into groups.
Název v anglickém jazyce
Interpreting and clustering outliers with sapling random forests
Popis výsledku anglicky
The main objective of outlier detection is find- ing samples considerably deviating from the majority. Such outliers, often referred to as anomalies, are nowadays more and more important, because they help to uncover in- teresting events within data. Consequently, a considerable amount of statistical and data mining techniques to iden- tify anomalies was proposed in the last few years, but only a few works at least mentioned why some sample was la- belled as an anomaly. Therefore, we propose a method based on specifically trained decision trees, called sapling random forest. Our method is able to interpret the output of arbitrary anomaly detector. The explanation is given as a subset of features, in which the sample is most deviating, or as con- junctions of atomic conditions, which can be viewed as antecedents of logical rules easily understandable by hu- mans. To simplify the investigation of suspicious samples even more, we propose two methods of clustering anoma- lies into groups.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 14th conference ITAT 2014 ? Workshops and Posters
ISBN
978-80-87136-19-5
ISSN
—
e-ISSN
—
Počet stran výsledku
7
Strana od-do
61-67
Název nakladatele
Institute of Computer Science AS CR
Místo vydání
Praha
Místo konání akce
Demänovská Dolina
Datum konání akce
25. 9. 2014
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—