Functional outlier detection and taxonomy by sequential transformations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60076658%3A12510%2F20%3A43900841" target="_blank" >RIV/60076658:12510/20:43900841 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0167947320300517?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0167947320300517?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.csda.2020.106960" target="_blank" >10.1016/j.csda.2020.106960</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Functional outlier detection and taxonomy by sequential transformations
Popis výsledku v původním jazyce
Functional data analysis can be seriously impaired by abnormal observations, which can be classified as either magnitude or shape outliers based on their way of deviating from the bulk of data. Identifying magnitude outliers is relatively easy, while detecting shape outliers is much more challenging. We propose turning the shape outliers into magnitude outliers through data transformation and detecting them using the functional boxplot. Besides easing the detection procedure, applying several transformations sequentially provides a reasonable taxonomy for the flagged outliers. A joint functional ranking, which consists of several transformations, is also defined here. Simulation studies are carried out to evaluate the performance of the proposed method using different functional depth notions. Interesting results are obtained in several practical applications.
Název v anglickém jazyce
Functional outlier detection and taxonomy by sequential transformations
Popis výsledku anglicky
Functional data analysis can be seriously impaired by abnormal observations, which can be classified as either magnitude or shape outliers based on their way of deviating from the bulk of data. Identifying magnitude outliers is relatively easy, while detecting shape outliers is much more challenging. We propose turning the shape outliers into magnitude outliers through data transformation and detecting them using the functional boxplot. Besides easing the detection procedure, applying several transformations sequentially provides a reasonable taxonomy for the flagged outliers. A joint functional ranking, which consists of several transformations, is also defined here. Simulation studies are carried out to evaluate the performance of the proposed method using different functional depth notions. Interesting results are obtained in several practical applications.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computational Statistics & Data Analysis
ISSN
0167-9473
e-ISSN
—
Svazek periodika
2020
Číslo periodika v rámci svazku
149
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
17
Strana od-do
1-17
Kód UT WoS článku
000531596000004
EID výsledku v databázi Scopus
2-s2.0-85083312381