Comparison of Seven Methods for Boolean Factor Analysis and Their Evaluation by Information Gain
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F16%3A00382475" target="_blank" >RIV/67985807:_____/16:00382475 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1109/TNNLS.2015.2412686" target="_blank" >http://dx.doi.org/10.1109/TNNLS.2015.2412686</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TNNLS.2015.2412686" target="_blank" >10.1109/TNNLS.2015.2412686</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Comparison of Seven Methods for Boolean Factor Analysis and Their Evaluation by Information Gain
Popis výsledku v původním jazyce
An usual task in large data set analysis is searching for an appropriate data representation in a space of fewer dimensions. One of the most efficient methods to solve this task is factor analysis. In this paper, we compare seven methods for Boolean factor analysis (BFA) in solving the so-called bars problem (BP), which is a BFA benchmark. The performance of the methods is evaluated by means of information gain. Study of the results obtained in solving BP of different levels of complexity has allowed us to reveal strengths and weaknesses of these methods. It is shown that the Likelihood maximization Attractor Neural Network with Increasing Activity (LANNIA) is the most efficient BFA method in solving BP in many cases. Efficacy of the LANNIA method is also shown, when applied to the real data from the Kyoto Encyclopedia of Genes and Genomes database, which contains full genome sequencing for 1368 organisms, and to text data set R52 (from Reuters 21578) typically used for label categorization.
Název v anglickém jazyce
Comparison of Seven Methods for Boolean Factor Analysis and Their Evaluation by Information Gain
Popis výsledku anglicky
An usual task in large data set analysis is searching for an appropriate data representation in a space of fewer dimensions. One of the most efficient methods to solve this task is factor analysis. In this paper, we compare seven methods for Boolean factor analysis (BFA) in solving the so-called bars problem (BP), which is a BFA benchmark. The performance of the methods is evaluated by means of information gain. Study of the results obtained in solving BP of different levels of complexity has allowed us to reveal strengths and weaknesses of these methods. It is shown that the Likelihood maximization Attractor Neural Network with Increasing Activity (LANNIA) is the most efficient BFA method in solving BP in many cases. Efficacy of the LANNIA method is also shown, when applied to the real data from the Kyoto Encyclopedia of Genes and Genomes database, which contains full genome sequencing for 1368 organisms, and to text data set R52 (from Reuters 21578) typically used for label categorization.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Transactions on Neural Networks and Learning Systems
ISSN
2162-237X
e-ISSN
—
Svazek periodika
27
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
13
Strana od-do
538-550
Kód UT WoS článku
000372022900004
EID výsledku v databázi Scopus
2-s2.0-84926645435