Generating Models of a Matched Formula with a Polynomial Delay
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F16%3A00450591" target="_blank" >RIV/67985807:_____/16:00450591 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11320/16:10331409
Výsledek na webu
<a href="http://dx.doi.org/10.1613/jair.4989" target="_blank" >http://dx.doi.org/10.1613/jair.4989</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1613/jair.4989" target="_blank" >10.1613/jair.4989</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Generating Models of a Matched Formula with a Polynomial Delay
Popis výsledku v původním jazyce
A matched formula is a CNF formula, such that the system of the sets of the variables, which appear in individual clauses, has a system of distinct representatives. Such a formula is always satisfiable. Matched formulas are used, for example, in the area of parametrized complexity. We prove that the problem of counting the number of the models (satisfying assignments) of a matched formula is #P-complete. On the other hand, we define a class of formulas generalizing the matched formulas and prove that for a formula in this class, one can choose in polynomial time a variable suitable for splitting the tree for the search of the models of the formula. As a consequence, the models of a formula from this class, in particular of any matched formula, can be generated sequentially with a delay polynomial in the size of the input. On the other hand, we prove that this task cannot be performed efficiently for the linearly satisfiable formulas, which is a generalization of matched formulas containing the class considered above.
Název v anglickém jazyce
Generating Models of a Matched Formula with a Polynomial Delay
Popis výsledku anglicky
A matched formula is a CNF formula, such that the system of the sets of the variables, which appear in individual clauses, has a system of distinct representatives. Such a formula is always satisfiable. Matched formulas are used, for example, in the area of parametrized complexity. We prove that the problem of counting the number of the models (satisfying assignments) of a matched formula is #P-complete. On the other hand, we define a class of formulas generalizing the matched formulas and prove that for a formula in this class, one can choose in polynomial time a variable suitable for splitting the tree for the search of the models of the formula. As a consequence, the models of a formula from this class, in particular of any matched formula, can be generated sequentially with a delay polynomial in the size of the input. On the other hand, we prove that this task cannot be performed efficiently for the linearly satisfiable formulas, which is a generalization of matched formulas containing the class considered above.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Artificial Intelligence Research
ISSN
1076-9757
e-ISSN
—
Svazek periodika
56
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
24
Strana od-do
379-402
Kód UT WoS článku
000380245500001
EID výsledku v databázi Scopus
2-s2.0-84979901439