Radii of Solvability and Unsolvability of Linear Systems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F16%3A00458516" target="_blank" >RIV/67985807:_____/16:00458516 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11320/16:10329230
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.laa.2016.03.028" target="_blank" >http://dx.doi.org/10.1016/j.laa.2016.03.028</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.laa.2016.03.028" target="_blank" >10.1016/j.laa.2016.03.028</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Radii of Solvability and Unsolvability of Linear Systems
Popis výsledku v původním jazyce
We consider a problem of determining the component-wise distance (called the radius) of a linear system of equations or inequalities to a system that is either solvable or unsolvable. We propose explicit characterization of these radii and show relations between them. Then the radii are classified in the polynomial vs. NP-hard manner. We also present a generalization to an arbitrary linear system consisting from both equations and inequalities with both free and nonnegative variables. Eventually, we extend the concept of the component-wise distance to a non-uniform one.
Název v anglickém jazyce
Radii of Solvability and Unsolvability of Linear Systems
Popis výsledku anglicky
We consider a problem of determining the component-wise distance (called the radius) of a linear system of equations or inequalities to a system that is either solvable or unsolvable. We propose explicit characterization of these radii and show relations between them. Then the radii are classified in the polynomial vs. NP-hard manner. We also present a generalization to an arbitrary linear system consisting from both equations and inequalities with both free and nonnegative variables. Eventually, we extend the concept of the component-wise distance to a non-uniform one.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA13-10660S" target="_blank" >GA13-10660S: Intervalové metody pro optimalizační úlohy</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Linear Algebra and Its Applications
ISSN
0024-3795
e-ISSN
—
Svazek periodika
503
Číslo periodika v rámci svazku
15 August
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
15
Strana od-do
120-134
Kód UT WoS článku
000376698000007
EID výsledku v databázi Scopus
2-s2.0-84964000548