Modeling and Clustering the Behavior of Animals Using Hidden Markov Models
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F16%3A00462894" target="_blank" >RIV/67985807:_____/16:00462894 - isvavai.cz</a>
Výsledek na webu
<a href="http://ceur-ws.org/Vol-1649/172.pdf" target="_blank" >http://ceur-ws.org/Vol-1649/172.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Modeling and Clustering the Behavior of Animals Using Hidden Markov Models
Popis výsledku v původním jazyce
The objectives of this article are to model behavior of individual animals and to cluster the resulting models in order to group animals with similar behavior patterns. Hidden Markov models are considered suitable for clustering purposes. Their clustering is well studied, however, only if the observable variables can be assumed to be Gaussian mixtures, which is not valid in our case. Therefore, we use the Kullback-Leibler divergence to cluster hidden Markov models with observable variables that have an arbitrary distribution. Hierarchical and spectral clustering is applied. To evaluate the modeling approach, an experiment was performed and an accuracy of 83.86% was reached in predicting behavioral sequences of individual animals. Results of clustering were evaluated by means of statistical descriptors of the animals and by a domain expert, both methods confirm that the results of clustering are meaningful.
Název v anglickém jazyce
Modeling and Clustering the Behavior of Animals Using Hidden Markov Models
Popis výsledku anglicky
The objectives of this article are to model behavior of individual animals and to cluster the resulting models in order to group animals with similar behavior patterns. Hidden Markov models are considered suitable for clustering purposes. Their clustering is well studied, however, only if the observable variables can be assumed to be Gaussian mixtures, which is not valid in our case. Therefore, we use the Kullback-Leibler divergence to cluster hidden Markov models with observable variables that have an arbitrary distribution. Hierarchical and spectral clustering is applied. To evaluate the modeling approach, an experiment was performed and an accuracy of 83.86% was reached in predicting behavioral sequences of individual animals. Results of clustering were evaluated by means of statistical descriptors of the animals and by a domain expert, both methods confirm that the results of clustering are meaningful.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings ITAT 2016: Information Technologies - Applications and Theory
ISBN
978-1-5370-1674-0
ISSN
1613-0073
e-ISSN
—
Počet stran výsledku
7
Strana od-do
172-178
Název nakladatele
Technical University & CreateSpace Independent Publishing Platform
Místo vydání
Aachen & Charleston
Místo konání akce
Tatranské Matliare
Datum konání akce
15. 9. 2016
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
—