Traditional Gaussian Process Surrogates in the BBOB Framework
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F16%3A00462909" target="_blank" >RIV/67985807:_____/16:00462909 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11320/16:10334234
Výsledek na webu
<a href="http://ceur-ws.org/Vol-1649/163.pdf" target="_blank" >http://ceur-ws.org/Vol-1649/163.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Traditional Gaussian Process Surrogates in the BBOB Framework
Popis výsledku v původním jazyce
Objective function evaluation in continuous optimization tasks is often the operation that dominates the algorithm’s cost. In particular in the case of black-box functions, i.e. when no analytical description is available, and the function is evaluated empirically. In such a situation, utilizing information from a surrogate model of the objective function is a well known technique to accelerate the search. In this paper, we review two traditional approaches to surrogate modelling based on Gaussian processes that we have newly reimplemented in MATLAB: Metamodel Assisted Evolution Strategy using probability of improvement and Gaussian Process Optimization Procedure. In the research reported in this paper, both approaches have been for the first time evaluated on Black-Box Optimization Benchmarking framework (BBOB), a comprehensive benchmark for continuous optimizers.
Název v anglickém jazyce
Traditional Gaussian Process Surrogates in the BBOB Framework
Popis výsledku anglicky
Objective function evaluation in continuous optimization tasks is often the operation that dominates the algorithm’s cost. In particular in the case of black-box functions, i.e. when no analytical description is available, and the function is evaluated empirically. In such a situation, utilizing information from a surrogate model of the objective function is a well known technique to accelerate the search. In this paper, we review two traditional approaches to surrogate modelling based on Gaussian processes that we have newly reimplemented in MATLAB: Metamodel Assisted Evolution Strategy using probability of improvement and Gaussian Process Optimization Procedure. In the research reported in this paper, both approaches have been for the first time evaluated on Black-Box Optimization Benchmarking framework (BBOB), a comprehensive benchmark for continuous optimizers.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/NV15-33250A" target="_blank" >NV15-33250A: Predikce terapeutické odpovědi u pacientů s depresivním onemocněním pomocí nových metod EEG analýzy.</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings ITAT 2016: Information Technologies - Applications and Theory
ISBN
978-1-5370-1674-0
ISSN
1613-0073
e-ISSN
—
Počet stran výsledku
9
Strana od-do
163-171
Název nakladatele
Technical University & CreateSpace Independent Publishing Platform
Místo vydání
Aachen & Charleston
Místo konání akce
Tatranské Matliare
Datum konání akce
15. 9. 2016
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
—