Statistical Modelling of El Nino - Southern Oscillation in Climatology
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F17%3A00473744" target="_blank" >RIV/67985807:_____/17:00473744 - isvavai.cz</a>
Výsledek na webu
<a href="http://hdl.handle.net/10338.dmlcz/146723" target="_blank" >http://hdl.handle.net/10338.dmlcz/146723</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
slovinština
Název v původním jazyce
Štatistické modelovanie javu El Nino - Južná oscilácia v klimatológii
Popis výsledku v původním jazyce
Pri modelovaní v klimatológii a meteorológii rozlišujeme dva základné druhy modelov - dynamické a štatistické. Dynamické modely majú fyzikálny základ, ktorý pozostáva z diskretizovaných diferenciálnych rovníc a súčasného stavu ako počiatočnej podmienky a následne modelujú stav systému integrovaním týchto rovníc v čase. Štatistické modely sú už v základe odlišné: ich fungovanie sa nezakladá na fyzikálnych mechanizmoch tvoriacich dynamiku modelovaného systému, ale sú odvodené z analýzy chodu počasia v minulosti. V tomto článku opíšeme príklad štatistického modelu, ktorý modeluje atmosféricko-oceánsky jav El Nino - Southern Oscillation. Zvýšenú pozornosť venujeme modelovaniu nelineárnych medziškálových interakcií. Okrem štatistických vlastností modelu sa tiež zaoberáme parametrizáciami šumu. Taktiež zvažujeme možnosť použitia štatistických modelov nízkej komplexity ako surogátnych modelov na generovanie dát za účelom štatistického testovania hypotéz.
Název v anglickém jazyce
Statistical Modelling of El Nino - Southern Oscillation in Climatology
Popis výsledku anglicky
When it comes to modelling in atmospheric and climate science, the two main types of models are taken into account – dynamical and statistical models. The former ones have a physical basis: they utilize discretised differential equations with a set of conditions (boundary conditions + present state as an initial condition) and model the system’s state by integrating the equations forward in time. The statistical models are considerably different: they are not based on physical mechanisms underlying the dynamics of the modeled system, but derived form the analysis of past weather patterns. The example of such statistical model, based on the idea of linear inverse modelling, is examined for modelling the El Nino – Southern Oscillation phenomenon with a focus on modeling cross-scale interactions in the temporal sense. Various noise parameterizations and the possibility of using multi-variable model are discussed among other characteristics of statistical model. The prospect of using statistical models with low complexity as a surrogate models for statistical testing is also discussed.
Klasifikace
Druh
J<sub>ost</sub> - Ostatní články v recenzovaných periodicích
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
<a href="/cs/project/LH14001" target="_blank" >LH14001: Klimatické sítě: Rozmanitost měřítek dynamiky a interakcí v atmosféře Země</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Pokroky matematiky, fyziky & astronomie
ISSN
0032-2423
e-ISSN
—
Svazek periodika
62
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
19
Strana od-do
52-70
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—