Statistical Modelling in Climate Science
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F16%3A00462914" target="_blank" >RIV/67985807:_____/16:00462914 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11320/16:10335131
Výsledek na webu
<a href="http://ceur-ws.org/Vol-1649/102.pdf" target="_blank" >http://ceur-ws.org/Vol-1649/102.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Statistical Modelling in Climate Science
Popis výsledku v původním jazyce
When it comes to modelling in atmospheric and climate science, the two main types of models are taken into account - dynamical and statistical models. The former ones have a physical basis: they utilize discretized differential equations with a set of conditions (boundary conditions + present state as an initial condition) and model the system’s state by integrating the equations forward in time. Models of this type are currently used e.g. as a numerical weather prediction models. The statistical models are considerably different: they are not based on physical mechanisms underlying the dynamics of the modelled system, but rather derived from the analysis of past weather patterns. An example of such a statistical model based on the idea of linear inverse modelling, is examined for modelling the El Nino - Southern Oscillation phenomenon with a focus on modelling cross-scale interactions in the temporal sense. Various noise parameterizations and the possibility of using a multi-variable model is discussed among other characteristics of the statistical model. The prospect of using statistical models with low complexity as a surrogate model for statistical testing of null hypotheses is also discussed.
Název v anglickém jazyce
Statistical Modelling in Climate Science
Popis výsledku anglicky
When it comes to modelling in atmospheric and climate science, the two main types of models are taken into account - dynamical and statistical models. The former ones have a physical basis: they utilize discretized differential equations with a set of conditions (boundary conditions + present state as an initial condition) and model the system’s state by integrating the equations forward in time. Models of this type are currently used e.g. as a numerical weather prediction models. The statistical models are considerably different: they are not based on physical mechanisms underlying the dynamics of the modelled system, but rather derived from the analysis of past weather patterns. An example of such a statistical model based on the idea of linear inverse modelling, is examined for modelling the El Nino - Southern Oscillation phenomenon with a focus on modelling cross-scale interactions in the temporal sense. Various noise parameterizations and the possibility of using a multi-variable model is discussed among other characteristics of the statistical model. The prospect of using statistical models with low complexity as a surrogate model for statistical testing of null hypotheses is also discussed.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
BB - Aplikovaná statistika, operační výzkum
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings ITAT 2016: Information Technologies - Applications and Theory
ISBN
978-1-5370-1674-0
ISSN
1613-0073
e-ISSN
—
Počet stran výsledku
8
Strana od-do
102-109
Název nakladatele
Technical University & CreateSpace Independent Publishing Platform
Místo vydání
Aachen & Charleston
Místo konání akce
Tatranské Matliare
Datum konání akce
15. 9. 2016
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
—