A Density Turán Theorem
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F17%3A00474851" target="_blank" >RIV/67985807:_____/17:00474851 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1002/jgt.22075" target="_blank" >http://dx.doi.org/10.1002/jgt.22075</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/jgt.22075" target="_blank" >10.1002/jgt.22075</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Density Turán Theorem
Popis výsledku v původním jazyce
Let F be a graph that contains an edge whose deletion reduces its chromatic number. For such a graph F, a classical result of Simonovits from 1966 shows that every graph on n > n(0)(F) vertices with more than chi(F)-2/chi(F)-1. n(2)/2 edges contains a copy of F. In this article we derive a similar theorem for multipartite graphs. For a graph H and an integer l >= v(H), let d(l) (H) be the minimum real number such that every l-partite graph whose edge density between any two parts is greater than d(l)(H) contains a copy of H. Our main contribution in this article is to show that d(l) (H) = chi(H)-2/chi(H)-1 for all l >= l(0)(H) sufficiently large if and only if H admits a vertex-coloring with chi(H) - 1 colors such that all color classes but one are independent sets, and the exceptional class induces just a matching. When H is a complete graph, this recovers a result of Pfender (Combinatorica 32 (2012), 483-495). We also consider several extensions of Pfender's result.
Název v anglickém jazyce
A Density Turán Theorem
Popis výsledku anglicky
Let F be a graph that contains an edge whose deletion reduces its chromatic number. For such a graph F, a classical result of Simonovits from 1966 shows that every graph on n > n(0)(F) vertices with more than chi(F)-2/chi(F)-1. n(2)/2 edges contains a copy of F. In this article we derive a similar theorem for multipartite graphs. For a graph H and an integer l >= v(H), let d(l) (H) be the minimum real number such that every l-partite graph whose edge density between any two parts is greater than d(l)(H) contains a copy of H. Our main contribution in this article is to show that d(l) (H) = chi(H)-2/chi(H)-1 for all l >= l(0)(H) sufficiently large if and only if H admits a vertex-coloring with chi(H) - 1 colors such that all color classes but one are independent sets, and the exceptional class induces just a matching. When H is a complete graph, this recovers a result of Pfender (Combinatorica 32 (2012), 483-495). We also consider several extensions of Pfender's result.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Graph Theory
ISSN
0364-9024
e-ISSN
—
Svazek periodika
85
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
29
Strana od-do
496-524
Kód UT WoS článku
000402151300014
EID výsledku v databázi Scopus
2-s2.0-85018815115