Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A Density Turán Theorem

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F17%3A00474851" target="_blank" >RIV/67985807:_____/17:00474851 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1002/jgt.22075" target="_blank" >http://dx.doi.org/10.1002/jgt.22075</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/jgt.22075" target="_blank" >10.1002/jgt.22075</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A Density Turán Theorem

  • Popis výsledku v původním jazyce

    Let F be a graph that contains an edge whose deletion reduces its chromatic number. For such a graph F, a classical result of Simonovits from 1966 shows that every graph on n > n(0)(F) vertices with more than chi(F)-2/chi(F)-1. n(2)/2 edges contains a copy of F. In this article we derive a similar theorem for multipartite graphs. For a graph H and an integer l >= v(H), let d(l) (H) be the minimum real number such that every l-partite graph whose edge density between any two parts is greater than d(l)(H) contains a copy of H. Our main contribution in this article is to show that d(l) (H) = chi(H)-2/chi(H)-1 for all l >= l(0)(H) sufficiently large if and only if H admits a vertex-coloring with chi(H) - 1 colors such that all color classes but one are independent sets, and the exceptional class induces just a matching. When H is a complete graph, this recovers a result of Pfender (Combinatorica 32 (2012), 483-495). We also consider several extensions of Pfender's result.

  • Název v anglickém jazyce

    A Density Turán Theorem

  • Popis výsledku anglicky

    Let F be a graph that contains an edge whose deletion reduces its chromatic number. For such a graph F, a classical result of Simonovits from 1966 shows that every graph on n > n(0)(F) vertices with more than chi(F)-2/chi(F)-1. n(2)/2 edges contains a copy of F. In this article we derive a similar theorem for multipartite graphs. For a graph H and an integer l >= v(H), let d(l) (H) be the minimum real number such that every l-partite graph whose edge density between any two parts is greater than d(l)(H) contains a copy of H. Our main contribution in this article is to show that d(l) (H) = chi(H)-2/chi(H)-1 for all l >= l(0)(H) sufficiently large if and only if H admits a vertex-coloring with chi(H) - 1 colors such that all color classes but one are independent sets, and the exceptional class induces just a matching. When H is a complete graph, this recovers a result of Pfender (Combinatorica 32 (2012), 483-495). We also consider several extensions of Pfender's result.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Graph Theory

  • ISSN

    0364-9024

  • e-ISSN

  • Svazek periodika

    85

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    29

  • Strana od-do

    496-524

  • Kód UT WoS článku

    000402151300014

  • EID výsledku v databázi Scopus

    2-s2.0-85018815115