Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

TMF Otimization in VGF Crystal Growth of GaAs by Artificial Neural Networks and Gaussian Process Models

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F17%3A00477799" target="_blank" >RIV/67985807:_____/17:00477799 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    TMF Otimization in VGF Crystal Growth of GaAs by Artificial Neural Networks and Gaussian Process Models

  • Popis výsledku v původním jazyce

    In Vertical Gradient Freeze growth of GaAs, the solid-liquid interface shape and subsequently the crystal quality can be improved by forced convection via travelling magnetic fields (TMFs). At present, general methodology to identify the relation and optimize magnetic and crystal growth parameters doesn’t exist. In this study, artificial neural networks (ANN) and Gaussian process models (GP) were used to assess the complex nonlinear relationships among the parameters and to optimize TMF for the interface flattening. 2D CFD simulations provided data sets for ANN and GP. The first encouraging results were presented and the strengths and weaknesses of both mathematical methods discussed.

  • Název v anglickém jazyce

    TMF Otimization in VGF Crystal Growth of GaAs by Artificial Neural Networks and Gaussian Process Models

  • Popis výsledku anglicky

    In Vertical Gradient Freeze growth of GaAs, the solid-liquid interface shape and subsequently the crystal quality can be improved by forced convection via travelling magnetic fields (TMFs). At present, general methodology to identify the relation and optimize magnetic and crystal growth parameters doesn’t exist. In this study, artificial neural networks (ANN) and Gaussian process models (GP) were used to assess the complex nonlinear relationships among the parameters and to optimize TMF for the interface flattening. 2D CFD simulations provided data sets for ANN and GP. The first encouraging results were presented and the strengths and weaknesses of both mathematical methods discussed.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10302 - Condensed matter physics (including formerly solid state physics, supercond.)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA17-01251S" target="_blank" >GA17-01251S: Metaučení pro extrakci pravidel s numerickými konsekventy</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Electrotechnologies for Material Processing

  • ISBN

    978-3-80273-095-5

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    6

  • Strana od-do

    203-208

  • Název nakladatele

    Vulkan

  • Místo vydání

    Hannover

  • Místo konání akce

    Hannover

  • Datum konání akce

    6. 6. 2017

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku