Optimization of Magnetically Driven Directional Solidification of Silicon Using Artificial Neural Networks and Gaussian Process Models
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F17%3A00476581" target="_blank" >RIV/67985807:_____/17:00476581 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.jcrysgro.2017.05.007" target="_blank" >http://dx.doi.org/10.1016/j.jcrysgro.2017.05.007</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jcrysgro.2017.05.007" target="_blank" >10.1016/j.jcrysgro.2017.05.007</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Optimization of Magnetically Driven Directional Solidification of Silicon Using Artificial Neural Networks and Gaussian Process Models
Popis výsledku v původním jazyce
In directional solidification of silicon, the solid-liquid interface shape plays a crucial role for the quality of crystals. The interface shape can be influenced by forced convection using travelling magnetic fields. Up to now, there is no general and explicit methodology to identify the relation and the optimum combination of magnetic and growth parameters e.g., frequency, phase shift, current magnitude and interface deflection in a buoyancy regime. In the present study, 2D CFD modeling was used to generate data for the design and training of artificial neural networks and for Gaussian process modeling. The aim was to quickly assess the complex nonlinear dependences among the parameters and to optimize them for the interface flattening. The first encouraging results are presented and the pros and cons of artificial neural networks and Gaussian process modeling discussed.
Název v anglickém jazyce
Optimization of Magnetically Driven Directional Solidification of Silicon Using Artificial Neural Networks and Gaussian Process Models
Popis výsledku anglicky
In directional solidification of silicon, the solid-liquid interface shape plays a crucial role for the quality of crystals. The interface shape can be influenced by forced convection using travelling magnetic fields. Up to now, there is no general and explicit methodology to identify the relation and the optimum combination of magnetic and growth parameters e.g., frequency, phase shift, current magnitude and interface deflection in a buoyancy regime. In the present study, 2D CFD modeling was used to generate data for the design and training of artificial neural networks and for Gaussian process modeling. The aim was to quickly assess the complex nonlinear dependences among the parameters and to optimize them for the interface flattening. The first encouraging results are presented and the pros and cons of artificial neural networks and Gaussian process modeling discussed.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA17-01251S" target="_blank" >GA17-01251S: Metaučení pro extrakci pravidel s numerickými konsekventy</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Crystal Growth
ISSN
0022-0248
e-ISSN
—
Svazek periodika
471
Číslo periodika v rámci svazku
1 August
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
9
Strana od-do
53-61
Kód UT WoS článku
000403624100008
EID výsledku v databázi Scopus
2-s2.0-85019609208