The Computational Power of Neural Networks and Representations of Numbers in Non-Integer Bases.
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F17%3A00486446" target="_blank" >RIV/67985807:_____/17:00486446 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The Computational Power of Neural Networks and Representations of Numbers in Non-Integer Bases.
Popis výsledku v původním jazyce
We briefly survey the basic concepts and results concerning the computational power of neural networks which basically depends on the information content of weight parameters. In particular, recurrent neural networks with integer, rational, and arbitrary real weights are classified within the Chomsky and finer complexity hierarchies. Then we refine the analysis between integer and rational weights by investigating an intermediate model of integer-weight neural networks with an extra analog rational-weight neuron (1ANN). We show a representation theorem which characterizes the classification problems solvable by 1ANNs, by using so-called cut languages. Our analysis reveals an interesting link to an active research field on non-standard positional numeral systems with non-integer bases. Within this framework, we introduce a new concept of quasi-periodic numbers which is used to classify the computational power of 1ANNs within the Chomsky hierarchy.
Název v anglickém jazyce
The Computational Power of Neural Networks and Representations of Numbers in Non-Integer Bases.
Popis výsledku anglicky
We briefly survey the basic concepts and results concerning the computational power of neural networks which basically depends on the information content of weight parameters. In particular, recurrent neural networks with integer, rational, and arbitrary real weights are classified within the Chomsky and finer complexity hierarchies. Then we refine the analysis between integer and rational weights by investigating an intermediate model of integer-weight neural networks with an extra analog rational-weight neuron (1ANN). We show a representation theorem which characterizes the classification problems solvable by 1ANNs, by using so-called cut languages. Our analysis reveals an interesting link to an active research field on non-standard positional numeral systems with non-integer bases. Within this framework, we introduce a new concept of quasi-periodic numbers which is used to classify the computational power of 1ANNs within the Chomsky hierarchy.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Centrum excelence - Institut teoretické informatiky (CE-ITI)</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Mendel 2017
ISBN
—
ISSN
1803-3814
e-ISSN
—
Počet stran výsledku
8
Strana od-do
103-110
Název nakladatele
University of Technology
Místo vydání
Brno
Místo konání akce
Brno
Datum konání akce
20. 6. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—