Analog Neuron Hierarchy
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F20%3A00507515" target="_blank" >RIV/67985807:_____/20:00507515 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.neunet.2020.05.006" target="_blank" >http://dx.doi.org/10.1016/j.neunet.2020.05.006</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.neunet.2020.05.006" target="_blank" >10.1016/j.neunet.2020.05.006</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Analog Neuron Hierarchy
Popis výsledku v původním jazyce
In order to refine the analysis of the computational power of discrete-time recurrent neural networks (NNs) between the binary-state NNs which are equivalent to finite automata (level 3 in the Chomsky hierarchy), and the analog-state NNs with rational weights which are Turing complete (Chomsky level 0), we study an intermediate model alphaANN of a binary-state NN that is extended with alpha >= 0 extra analog-state neurons. For rational weights, we establish an analog neuron hierarchy 0ANNs subset 1ANNs subset 2ANNs subseteq 3ANNs and separate its first two levels. In particular, 0ANNs coincide with the binary-state NNs (Chomsky level 3) being a proper subset of 1ANNs which accept at most context-sensitive languages (Chomsky level 1) including some non-context-free ones (above Chomsky level 2). We prove that the deterministic (context-free) language L_# = { 0^n1^n | n >= 1 } cannot be recognized by any 1ANN even with real weights. In contrast, we show that deterministic pushdown automata accepting deterministic languages can be simulated by 2ANNs with rational weights, which thus constitute a proper superset of 1ANNs. Finally, we prove that the analog neuron hierarchy collapses to 3ANNs by showing that any Turing machine can be simulated by a 3ANN having rational weights, with linear-time overhead.
Název v anglickém jazyce
Analog Neuron Hierarchy
Popis výsledku anglicky
In order to refine the analysis of the computational power of discrete-time recurrent neural networks (NNs) between the binary-state NNs which are equivalent to finite automata (level 3 in the Chomsky hierarchy), and the analog-state NNs with rational weights which are Turing complete (Chomsky level 0), we study an intermediate model alphaANN of a binary-state NN that is extended with alpha >= 0 extra analog-state neurons. For rational weights, we establish an analog neuron hierarchy 0ANNs subset 1ANNs subset 2ANNs subseteq 3ANNs and separate its first two levels. In particular, 0ANNs coincide with the binary-state NNs (Chomsky level 3) being a proper subset of 1ANNs which accept at most context-sensitive languages (Chomsky level 1) including some non-context-free ones (above Chomsky level 2). We prove that the deterministic (context-free) language L_# = { 0^n1^n | n >= 1 } cannot be recognized by any 1ANN even with real weights. In contrast, we show that deterministic pushdown automata accepting deterministic languages can be simulated by 2ANNs with rational weights, which thus constitute a proper superset of 1ANNs. Finally, we prove that the analog neuron hierarchy collapses to 3ANNs by showing that any Turing machine can be simulated by a 3ANN having rational weights, with linear-time overhead.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-05704S" target="_blank" >GA19-05704S: FoNeCo: Analytické základy neurovýpočtů</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Neural Networks
ISSN
0893-6080
e-ISSN
—
Svazek periodika
128
Číslo periodika v rámci svazku
August 2020
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
17
Strana od-do
199-215
Kód UT WoS článku
000567812200017
EID výsledku v databázi Scopus
2-s2.0-85084938909