A Study of Truth Predicates in Matrix Semantics
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F18%3A00491283" target="_blank" >RIV/67985807:_____/18:00491283 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1017/S175502031800014X" target="_blank" >http://dx.doi.org/10.1017/S175502031800014X</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1017/S175502031800014X" target="_blank" >10.1017/S175502031800014X</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Study of Truth Predicates in Matrix Semantics
Popis výsledku v původním jazyce
Abstract algebraic logic is a theory that provides general tools for the algebraic study of arbitrary propositional logics. According to this theory, every logic L is associated with a matrix semantics Mod*L. This article is a contribution to the systematic study of the so-called truth sets of the matrices in Mod*L. In particular, we show that the fact that the truth sets of Mod*L can be defined by means of equations with universally quantified parameters is captured by an order-theoretic property of the Leibniz operator restricted to deductive filters of L. This result was previously known for equational definability without parameters. Similarly, it was known that the truth sets of Mod*L are implicitly definable if and only if the Leibniz operator is injective on deductive filters of L over every algebra. However, it was an open problem whether the injectivity of the Leibniz operator transfers from the theories of L to its deductive filters over arbitrary algebras. We show that this is the case for logics expressed in a countable language, and that it need not be true in general. Finally we consider an intermediate condition on the truth sets in Mod∗L that corresponds to the order-reflection of the Leibniz operator.
Název v anglickém jazyce
A Study of Truth Predicates in Matrix Semantics
Popis výsledku anglicky
Abstract algebraic logic is a theory that provides general tools for the algebraic study of arbitrary propositional logics. According to this theory, every logic L is associated with a matrix semantics Mod*L. This article is a contribution to the systematic study of the so-called truth sets of the matrices in Mod*L. In particular, we show that the fact that the truth sets of Mod*L can be defined by means of equations with universally quantified parameters is captured by an order-theoretic property of the Leibniz operator restricted to deductive filters of L. This result was previously known for equational definability without parameters. Similarly, it was known that the truth sets of Mod*L are implicitly definable if and only if the Leibniz operator is injective on deductive filters of L over every algebra. However, it was an open problem whether the injectivity of the Leibniz operator transfers from the theories of L to its deductive filters over arbitrary algebras. We show that this is the case for logics expressed in a countable language, and that it need not be true in general. Finally we consider an intermediate condition on the truth sets in Mod∗L that corresponds to the order-reflection of the Leibniz operator.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA17-04630S" target="_blank" >GA17-04630S: Predikátové škálované logiky a jejich aplikace v informatice</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Review of Symbolic Logic
ISSN
1755-0203
e-ISSN
—
Svazek periodika
11
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
25
Strana od-do
780-804
Kód UT WoS článku
000451012600006
EID výsledku v databázi Scopus
2-s2.0-85048080374