An Algebraic View of Super-Belnap Logics
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F17%3A00477279" target="_blank" >RIV/67985807:_____/17:00477279 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/s11225-017-9739-7" target="_blank" >http://dx.doi.org/10.1007/s11225-017-9739-7</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11225-017-9739-7" target="_blank" >10.1007/s11225-017-9739-7</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
An Algebraic View of Super-Belnap Logics
Popis výsledku v původním jazyce
The Belnap–Dunn logic (also known as First Degree Entailment, or FDE) is a well-known and well-studied four-valued logic, but until recently little has been known about its extensions, i.e. stronger logics in the same language, called super-Belnap logics here. We give an overview of several results on these logics which have been proved in recent works by Přenosil and Rivieccio. We present Hilbert-style axiomatizations, describe reduced matrix models, and give a description of the lattice of super-Belnap logics and its connections with graph theory. We adopt the point of view of Abstract Algebraic Logic, exploring applications of the general theory of algebraization of logics to the super-Belnap family. In this respect we establish a number of new results, including a description of the algebraic counterparts, Leibniz filters, and strong versions of super-Belnap logics, as well as the classification of these logics within the Leibniz and Frege hierarchies.
Název v anglickém jazyce
An Algebraic View of Super-Belnap Logics
Popis výsledku anglicky
The Belnap–Dunn logic (also known as First Degree Entailment, or FDE) is a well-known and well-studied four-valued logic, but until recently little has been known about its extensions, i.e. stronger logics in the same language, called super-Belnap logics here. We give an overview of several results on these logics which have been proved in recent works by Přenosil and Rivieccio. We present Hilbert-style axiomatizations, describe reduced matrix models, and give a description of the lattice of super-Belnap logics and its connections with graph theory. We adopt the point of view of Abstract Algebraic Logic, exploring applications of the general theory of algebraization of logics to the super-Belnap family. In this respect we establish a number of new results, including a description of the algebraic counterparts, Leibniz filters, and strong versions of super-Belnap logics, as well as the classification of these logics within the Leibniz and Frege hierarchies.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Centrum excelence - Institut teoretické informatiky (CE-ITI)</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Studia Logica
ISSN
0039-3215
e-ISSN
—
Svazek periodika
105
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
36
Strana od-do
1051-1086
Kód UT WoS článku
000415716400002
EID výsledku v databázi Scopus
2-s2.0-85026908823