Cut Elimination, Identity Elimination, and Interpolation in Super-Belnap Logics
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F17%3A00477770" target="_blank" >RIV/67985807:_____/17:00477770 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/s11225-017-9746-8" target="_blank" >http://dx.doi.org/10.1007/s11225-017-9746-8</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11225-017-9746-8" target="_blank" >10.1007/s11225-017-9746-8</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Cut Elimination, Identity Elimination, and Interpolation in Super-Belnap Logics
Popis výsledku v původním jazyce
We develop a Gentzen-style proof theory for super-Belnap logics (extensions of the four-valued Dunn–Belnap logic), expanding on an approach initiated by Pynko. We show that just like substructural logics may be understood proof-theoretically as logics which relax the structural rules of classical logic but keep its logical rules as well as the rules of Identity and Cut, super-Belnap logics may be seen as logics which relax Identity and Cut but keep the logical rules as well as the structural rules of classical logic. A generalization of the cut elimination theorem for classical propositional logic is then proved and used to establish interpolation for various super-Belnap logics. In particular, we obtain an alternative syntactic proof of a refinement of the Craig interpolation theorem for classical propositional logic discovered recently by Milne.
Název v anglickém jazyce
Cut Elimination, Identity Elimination, and Interpolation in Super-Belnap Logics
Popis výsledku anglicky
We develop a Gentzen-style proof theory for super-Belnap logics (extensions of the four-valued Dunn–Belnap logic), expanding on an approach initiated by Pynko. We show that just like substructural logics may be understood proof-theoretically as logics which relax the structural rules of classical logic but keep its logical rules as well as the rules of Identity and Cut, super-Belnap logics may be seen as logics which relax Identity and Cut but keep the logical rules as well as the structural rules of classical logic. A generalization of the cut elimination theorem for classical propositional logic is then proved and used to establish interpolation for various super-Belnap logics. In particular, we obtain an alternative syntactic proof of a refinement of the Craig interpolation theorem for classical propositional logic discovered recently by Milne.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Centrum excelence - Institut teoretické informatiky (CE-ITI)</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Studia Logica
ISSN
0039-3215
e-ISSN
—
Svazek periodika
105
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
35
Strana od-do
1255-1289
Kód UT WoS článku
000415716400009
EID výsledku v databázi Scopus
2-s2.0-85027872839