The Lattice of Super-Belnap Logics
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F23%3A00542368" target="_blank" >RIV/67985807:_____/23:00542368 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1017/S1755020321000204" target="_blank" >http://dx.doi.org/10.1017/S1755020321000204</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1017/S1755020321000204" target="_blank" >10.1017/S1755020321000204</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The Lattice of Super-Belnap Logics
Popis výsledku v původním jazyce
We study the lattice of extensions of four-valued Belnap-Dunn logic, called super-Belnap logics by analogy with superintuitionistic logics. We describe the global structure of this lattice by splitting it into several subintervals, and prove some new completeness theorems for super-Belnap logics. The crucial technical tool for this purpose will be the so-called antiaxiomatic (or explosive) part operator. The antiaxiomatic (or explosive) extensions of Belnap-Dunn logic turn out to be of particular interest owing to their connection to graph theory: the lattice of finitary antiaxiomatic extensions of Belnap-Dunn logic is isomorphic to the lattice of upsets in the homomorphism order on finite graphs (with loops allowed). In particular, there is a continuum of finitary super Belnap logics. Moreover, a non-finitary super-Belnap logic can be constructed with the help of this isomorphism. As algebraic corollaries we obtain the existence of a continuum of antivarieties of De Morgan algebras and the existence of a prevariety of De Morgan algebras which is not a quasivariety.
Název v anglickém jazyce
The Lattice of Super-Belnap Logics
Popis výsledku anglicky
We study the lattice of extensions of four-valued Belnap-Dunn logic, called super-Belnap logics by analogy with superintuitionistic logics. We describe the global structure of this lattice by splitting it into several subintervals, and prove some new completeness theorems for super-Belnap logics. The crucial technical tool for this purpose will be the so-called antiaxiomatic (or explosive) part operator. The antiaxiomatic (or explosive) extensions of Belnap-Dunn logic turn out to be of particular interest owing to their connection to graph theory: the lattice of finitary antiaxiomatic extensions of Belnap-Dunn logic is isomorphic to the lattice of upsets in the homomorphism order on finite graphs (with loops allowed). In particular, there is a continuum of finitary super Belnap logics. Moreover, a non-finitary super-Belnap logic can be constructed with the help of this isomorphism. As algebraic corollaries we obtain the existence of a continuum of antivarieties of De Morgan algebras and the existence of a prevariety of De Morgan algebras which is not a quasivariety.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Centrum excelence - Institut teoretické informatiky (CE-ITI)</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Review of Symbolic Logic
ISSN
1755-0203
e-ISSN
1755-0211
Svazek periodika
16
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
50
Strana od-do
114-163
Kód UT WoS článku
000792356600001
EID výsledku v databázi Scopus
2-s2.0-85104753444