Nonlinearity in Stock Networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F18%3A00494143" target="_blank" >RIV/67985807:_____/18:00494143 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1063/1.5023309" target="_blank" >http://dx.doi.org/10.1063/1.5023309</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/1.5023309" target="_blank" >10.1063/1.5023309</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Nonlinearity in Stock Networks
Popis výsledku v původním jazyce
Stock networks, constructed from stock price time series, are a well-established tool for the characterization of complex behavior in stock markets. Following Mantegna’s seminal paper, the linear Pearson’s correlation coefficient between pairs of stocks has been the usual way to determine network edges. Recently, possible effects of nonlinearity on the graph-theoretical properties of such networks have been demonstrated when using nonlinear measures such as mutual information instead of linear correlation. In this paper, we quantitatively characterize the nonlinearity in stock time series and the effect it has on stock network properties. This is achieved by a systematic multi-step approach that allows us to quantify the nonlinearity of coupling, correct its effects wherever it is caused by simple univariate non-Gaussianity, potentially localize in space and time any remaining strong sources of this nonlinearity, and, finally, study the effect nonlinearity has on global network properties. By applying this multi-step approach to stocks included in three prominent indices (New York Stock Exchange 100, Financial Times Stock Exchange 100, and Standard & Poor 500), we establish that the apparent nonlinearity that has been observed is largely due to univariate non-Gaussianity. Furthermore, strong nonstationarity in a few specific stocks may play a role. In particular, the sharp decrease in some stocks during the global financial crisis of 2008 gives rise to apparent nonlinear dependencies among stocks.
Název v anglickém jazyce
Nonlinearity in Stock Networks
Popis výsledku anglicky
Stock networks, constructed from stock price time series, are a well-established tool for the characterization of complex behavior in stock markets. Following Mantegna’s seminal paper, the linear Pearson’s correlation coefficient between pairs of stocks has been the usual way to determine network edges. Recently, possible effects of nonlinearity on the graph-theoretical properties of such networks have been demonstrated when using nonlinear measures such as mutual information instead of linear correlation. In this paper, we quantitatively characterize the nonlinearity in stock time series and the effect it has on stock network properties. This is achieved by a systematic multi-step approach that allows us to quantify the nonlinearity of coupling, correct its effects wherever it is caused by simple univariate non-Gaussianity, potentially localize in space and time any remaining strong sources of this nonlinearity, and, finally, study the effect nonlinearity has on global network properties. By applying this multi-step approach to stocks included in three prominent indices (New York Stock Exchange 100, Financial Times Stock Exchange 100, and Standard & Poor 500), we establish that the apparent nonlinearity that has been observed is largely due to univariate non-Gaussianity. Furthermore, strong nonstationarity in a few specific stocks may play a role. In particular, the sharp decrease in some stocks during the global financial crisis of 2008 gives rise to apparent nonlinear dependencies among stocks.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Chaos
ISSN
1054-1500
e-ISSN
—
Svazek periodika
28
Číslo periodika v rámci svazku
8
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
15
Strana od-do
—
Kód UT WoS článku
000443760700032
EID výsledku v databázi Scopus
2-s2.0-85052956242