Robust Metalearning: Comparing Robust Regression Using A Robust Prediction Error
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F18%3A00497292" target="_blank" >RIV/67985807:_____/18:00497292 - isvavai.cz</a>
Výsledek na webu
<a href="https://msed.vse.cz/msed_2018/article/13-Pestova-Barbora-paper.pdf" target="_blank" >https://msed.vse.cz/msed_2018/article/13-Pestova-Barbora-paper.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Robust Metalearning: Comparing Robust Regression Using A Robust Prediction Error
Popis výsledku v původním jazyce
The aim of this paper is to construct a classification rule for predicting the best regression estimator for a new data set based on a database of 20 training data sets. Various estimators considered here include some popular methods of robust statistics. The methodology used for constructing the classification rule can be described as metalearning. Nevertheless, standard approaches of metalearning should be robustified if working with data sets contaminated by outlying measurements (outliers). Therefore, our contribution can be also described as robustification of the metalearning process by using a robust prediction error. In addition to performing the metalearning study by means of both standard and robust approaches, we search for a detailed interpretation in two particular situations. The results of detailed investigation show that the knowledge obtained by a metalearning approach standing on standard principles is prone to great variability and instability, which makes it hard to believe that the results are not just a consequence of a mere chance. Such aspect of metalearning seems not to have been previously analyzed in literature.
Název v anglickém jazyce
Robust Metalearning: Comparing Robust Regression Using A Robust Prediction Error
Popis výsledku anglicky
The aim of this paper is to construct a classification rule for predicting the best regression estimator for a new data set based on a database of 20 training data sets. Various estimators considered here include some popular methods of robust statistics. The methodology used for constructing the classification rule can be described as metalearning. Nevertheless, standard approaches of metalearning should be robustified if working with data sets contaminated by outlying measurements (outliers). Therefore, our contribution can be also described as robustification of the metalearning process by using a robust prediction error. In addition to performing the metalearning study by means of both standard and robust approaches, we search for a detailed interpretation in two particular situations. The results of detailed investigation show that the knowledge obtained by a metalearning approach standing on standard principles is prone to great variability and instability, which makes it hard to believe that the results are not just a consequence of a mere chance. Such aspect of metalearning seems not to have been previously analyzed in literature.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA17-01251S" target="_blank" >GA17-01251S: Metaučení pro extrakci pravidel s numerickými konsekventy</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
The 12th International Days of Statistics and Economics Conference Proceedings
ISBN
978-80-87990-14-8
ISSN
—
e-ISSN
—
Počet stran výsledku
10
Strana od-do
1367-1376
Název nakladatele
Melandrium
Místo vydání
Slaný
Místo konání akce
Prague
Datum konání akce
6. 9. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000455809400135