A Comparison of Robust Model Choice Criteria Within a Metalearning Study
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F20%3A00531580" target="_blank" >RIV/67985807:_____/20:00531580 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-030-48814-7_7" target="_blank" >http://dx.doi.org/10.1007/978-3-030-48814-7_7</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-48814-7_7" target="_blank" >10.1007/978-3-030-48814-7_7</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Comparison of Robust Model Choice Criteria Within a Metalearning Study
Popis výsledku v původním jazyce
The methodology of automatic method selection (metalearning) allows to recommend the most suitable method (e.g. algorithm or statistical estimator) from several alternatives for a given dataset, based on information learned over a training database of datasets. Practitioners have become accustomed to using metalearning in the context of regression modeling, which is useful in a variety of applications in different fields. Still, none of previous metalearning studies on regression targeted at regression complexity issues and the majority of available metalearning studies for regression considered the standard mean square error as the prediction error measure. In this paper, a metalearning study focused on comparing different method selection criteria for the regression task is presented. A prediction rule, recommending the best regression estimator (possibly robust), is constructed over 31 training datasets. These are publicly available datasets, in which the linear model was carefully examined to be suitable. The results with the highest classification accuracy are obtained if the choice of the best estimator is based on robust versions of Akaike information criterion, particularly the version derived from MM-estimators. The work also advocates an implicitly weighted robust prediction mean square error.
Název v anglickém jazyce
A Comparison of Robust Model Choice Criteria Within a Metalearning Study
Popis výsledku anglicky
The methodology of automatic method selection (metalearning) allows to recommend the most suitable method (e.g. algorithm or statistical estimator) from several alternatives for a given dataset, based on information learned over a training database of datasets. Practitioners have become accustomed to using metalearning in the context of regression modeling, which is useful in a variety of applications in different fields. Still, none of previous metalearning studies on regression targeted at regression complexity issues and the majority of available metalearning studies for regression considered the standard mean square error as the prediction error measure. In this paper, a metalearning study focused on comparing different method selection criteria for the regression task is presented. A prediction rule, recommending the best regression estimator (possibly robust), is constructed over 31 training datasets. These are publicly available datasets, in which the linear model was carefully examined to be suitable. The results with the highest classification accuracy are obtained if the choice of the best estimator is based on robust versions of Akaike information criterion, particularly the version derived from MM-estimators. The work also advocates an implicitly weighted robust prediction mean square error.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Analytical Methods in Statistics
ISBN
978-3-030-48813-0
ISSN
—
e-ISSN
—
Počet stran výsledku
17
Strana od-do
125-141
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
Liberec
Datum konání akce
16. 9. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—